Home
Class 12
MATHS
Let n ge 2 be a natural number and 0 lt ...

Let `n ge 2` be a natural number and `0 lt theta lt (pi)/(2)`, Then, `int ((sin^(n)theta - sin theta)^(1/n) cos theta)/(sin^(n+1) theta)d theta` is equal to (where C is a constant of integration)

A

`n/(n^2-1)(1-1/(sin^(n+1)theta))^((n+1)/n)+C`

B

`n/(n^2+1)(1-1/(sin^(n-1)theta))^((n+1)/n)+C`

C

`n/(n^2-1)(1-1/(sin^(n-1)theta))^((n+1)/n)+C`

D

`n/(n^2-1)(1+1/(sin^(n-1)theta))^((n+1)/n)+C`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

If pi/2 lt theta lt 3 pi/2 then sqrt( (1-sin theta)/(1+ sin theta )) - tan theta is

(1)/(sin^(2)theta)-(cos^(2)theta)/(sin^(2) theta) =___.

Prove that (sin theta+sin 2theta)/(1+cos theta+cos 2 theta)=tan theta

Solve (3 sin theta-sin 3 theta)/(sin theta)+(cos 3 theta)/(cos theta)=1 .

If (sin 3theta)/(cos 2theta)lt 0 , then theta lies in

((1+sin theta+icos theta)/(1+sin theta - icos theta))^(n)=

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .