Home
Class 12
MATHS
The integral int(pi//6)^(pi//4)(dx)/(si...

The integral `int_(pi//6)^(pi//4)(dx)/(sin2x(tan^(5)x+cot^(5)x))` equals

A

`1/10(pi/4-tan^(-1)(1/(9sqrt3)))`

B

`1/5(pi/4-tan^(-1)(1/(3sqrt3)))`

C

`pi/10`

D

`1/20-tan^(-1)(1/(9sqrt3))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Statement I: The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx)) is equal to (pi)/6 . Statement II: int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

The integral int_(pi//6)^(pi//3)sec^(2//3)x " cosec"^(4//3)x dx is equal to

By using the properties of definite integrals, evaluate the integrals int_(0)^(pi/2)(cos^(5)xdx)/(sin^(5)x+cos^(5)x)

int_(0)^(pi/2)(cot^(2)xdx)/(tan^(2)x+cot^(2)x)

Evaluate: int_(0)^(pi/2)(dx)/(4sin^(2)x+5cos^(2)x)

By using the properties of definite integrals, evaluate the integrals int_(0)^((pi)/(2))(sin^(5/2)xdx)/(sin^(5/2)x+cos^(5/2)x)

By using the properties of definite integrals, evaluate the integrals int_(0)^((pi)/(2))(cos^(6)xdx)/(sin^(6)x+cos^(6)x)

Evaluate int_(0)^(pi/2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

The value of int_(0)^(pi//2)(dx)/(1+tan^(3)x) is