Home
Class 12
MATHS
The integral int(1)^(e){(x/e)^(2x)-(e/x)...

The integral `int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx` is equal to

A

`1/2-e-1/e^2`

B

`3/2-1/e-1/(2e^2)`

C

`-1/2+1/e-1/(2e^2)`

D

`3/2-e-1/(2e^2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int(dx)/(e^(x)+e^(-x)) is equal to

The integral int(1+x-1/x)e^(x+1/x)dx is equal to

int ((x+2)/(x+4))^2 e^x dx is equal to

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

Compute the integrals: int_(1/e)^e1/xsin(x-1/x)dx

int(1)/(x)ln((x)/(e^(x)))dx=

int(e^(x)(x-2))/(x(x^(2)+e^(x)))dx AAx gt0 is equal to

Evaluate the definite integral int_(1)^(2)e^(x)dx

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx