Home
Class 12
MATHS
The asymptotes of the hyperbola (x^(2))/...

The asymptotes of the hyperbola `(x^(2))/(a_(1)^(2))-(y^(2))/(b_(1)^(2))=1` and `(x^(2))/(a_(2)^(2))-(y^(2))/(b_(2)^(2))=1` are perpendicular to each other. Then,

A

`a_(1)//a_(2)=b_(1)//b_(2)`

B

`a_(1)a_(2)=b_(1)b_(2)`

C

`a_(1)a_(2)+b_(1)b_(2)=0`

D

`a_(1)-a_(2)=b_(1)-b_(2)`

Text Solution

Verified by Experts

The correct Answer is:
C

The slopes of asymptotes are
`m_(1)=(b_(1))/(a_(1)),m_(2)=(b_(2))/(a_(2))`
According to the question,
`m_(1)m_(2)=-1`
`"or "a_(1)a_(2)+b_(1)b_(2)=0`
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE|Exercise Exercise (Multiple)|18 Videos
  • HYPERBOLA

    CENGAGE|Exercise Exercise (Comprehension)|21 Videos
  • HYPERBOLA

    CENGAGE|Exercise Exercise 7.6|4 Videos
  • HIGHT AND DISTANCE

    CENGAGE|Exercise JEE Previous Year|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Question Bank|21 Videos

Similar Questions

Explore conceptually related problems

For the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2)) =1 and (x^(2))/(b^(2))+(y^(2))/(a^(2)) =1

Find the equations to the common tangents to the two hyperbolas (x^2)/(a^2)-(y^2)/(b^2)=1 and (y^2)/(a^2)-(x^2)/(b^2)=1

The asymptote to the curve y^(2)(1+x)=x^(2)(1-x) is

The area of quardrilateral formed with foci of the hyperbolas x^(2)/a^(2) - y^(2)/b^(2) =1 and x^(2)/a^(2) - y^(2)/b^(2) = -1 is

Find the angle between the asymptotes of the hyperbola (x^2)/(16)-(y^2)/9=1 .

Show that the acute angle between the asymptotes of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1,(a^2> b^2), is 2cos^(-1)(1/e), where e is the eccentricity of the hyperbola.

From any point on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , tangents are drawn to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=2. The area cut-off by the chord of contact on the asymptotes is equal to a/2 (b) a b (c) 2a b (d) 4a b

If any line perpendicular to the transverse axis cuts the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 and the conjugate hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 at points Pa n dQ , respectively, then prove that normal at Pa n dQ meet on the x-axis.

Statement 1 : If from any point P(x_1, y_1) on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 , tangents are drawn to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1, then the corresponding chord of contact lies on an other branch of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 Statement 2 : From any point outside the hyperbola, two tangents can be drawn to the hyperbola.

CENGAGE-HYPERBOLA-Exercise (Single)
  1. If the angle between the asymptotes of hyperbola (x^2)/(a^2)-(y^2)/(b^...

    Text Solution

    |

  2. Let any double ordinate P N P ' of the hyperbola (x^2)/(25)-(y^2)/(16)...

    Text Solution

    |

  3. For hyperbola whose center is at (1, 2) and the asymptotes are paralle...

    Text Solution

    |

  4. The asymptotes of the hyperbola (x^(2))/(a(1)^(2))-(y^(2))/(b(1)^(2))=...

    Text Solution

    |

  5. If S=0 is the equation of the hyperbola x^2+4x y+3y^2-4x+2y+1=0 , then...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. A hyperbola passes through (2,3) and has asymptotes 3x-4y+5=0 and 12 x...

    Text Solution

    |

  8. From any point on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , tangents a...

    Text Solution

    |

  9. The combined equation of the asymptotes of the hyperbola 2x^2+5x y+2y^...

    Text Solution

    |

  10. The asymptotes of the hyperbola x y=h x+k y are (a)x-k=0 and y-h=0 (b...

    Text Solution

    |

  11. The center of a rectangular hyperbola lies on the line y=2xdot If one ...

    Text Solution

    |

  12. The equation of a rectangular hyperbola whose asymptotes are x=3 and y...

    Text Solution

    |

  13. If tangents O Q and O R are dawn to variable circles having radius r a...

    Text Solution

    |

  14. Four points are such that the line joining any two points is perpen...

    Text Solution

    |

  15. If S1a n dS2 are the foci of the hyperbola whose length of the transve...

    Text Solution

    |

  16. Suppose the circle having equation x^2+y^2=3 intersects the rectangula...

    Text Solution

    |

  17. The equation of the chord joining two points (x(1),y(1)) and (x(2),y(2...

    Text Solution

    |

  18. The locus of the foot of the perpendicular from the center of the h...

    Text Solution

    |

  19. The curve xy = c(c > 0) and the circle x^2 +y^2=1 touch at two points,...

    Text Solution

    |

  20. Let C be a curve which is the locus of the point of intersection of li...

    Text Solution

    |