Home
Class 12
MATHS
Find (dy)/(dx) for y=x^xdot...

Find `(dy)/(dx) for y=x^xdot`

Text Solution

Verified by Experts

The correct Answer is:
`x^(x)(1+ log x)`

`"Let "y=x^(x). Then, y= e^(xlog x).`
Differentiating both sides w.r.t. x, we get
`(dy)/(dx)=e^(x log x)(d)/(dx)(x log x)`
`=x^(x)(log x+ x(1)/(x))" "[becausee^(x log x)=x^(x)]`
`=x^(x)(1+ log x)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for y =(x^2 + 4x + 6)^5

Find (dy)/(dx) for y=sin(x^2+1)dot

Find (dy)/(dx) " for " xy + xe^(-y) + ye^(x) = x^(2)

Find (dy)/(dx) if y =e^(x) sin 2x

Find (dy)/(dx), " if "y^(x)+x^(y)+x^(x)= a^(b) .

Find (dy)/(dx) where y=(tanx)/(x)

Find (dy)/(dx) if y = tan^(-1)(x^(2)) .

Find (dy)/(dx) for the functions: y=(sinx)/(x+cosx)

Find (dy)/(dx) for the function: y=e^sin(x^2)

Find (dy)/(dx) for the functions: y=x^3e^xsinx