Home
Class 12
MATHS
"If "f(x)=|{:(x+a^(2),ab,ac),(ab, x+b^(2...

`"If "f(x)=|{:(x+a^(2),ab,ac),(ab, x+b^(2),bc),(ac,bc, x+c^(2)):}|," then prove that "`
`f'(x)=3x^(2)+2x(a^(2)+b^(2)+c^(2))`.

Text Solution

Verified by Experts

We have
`f(x)=|{:(x+a^(2),ab,ac),(ab,x+b^(2),bc),(ac,bc,x+c^(2)):}|`
`therefore" "f'(x)=|{:(1,0,0),(ab,x+b^(2),bc),(ac,bc,x+c^(2)):}|+|{:(x+a^(2),ab,ac),(0,1,0),(ac,bc,x+c^(2)):}|+|{:(x+a^(2),ab,ac),(ab,x+b^(2),bc),(0,0,1):}|`
`=|{:(x+b^(2),bc),(bc,x+c^(2)):}|+|{:(x+a^(2),ac),(ac,x+c^(2)):}|+|{:(x+a^(2),ab),(ab,x+b^(2)):}|`
`=[(x+b^(2))(x+c^(2))-b^(2)c^(2)]+[(x+a^(2))(x+c^(2))-a^(2)c^(2)]`
`=3x^(2)+2x(a^(2)+b^(2)+c^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.8|15 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.6|8 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|x+a^2 a b ac a b x+b^2 bc a c b c x+c^2|, t h e n prove that f^(prime)(x)=3x^2+2x(a^2+b^2+c^2)dot

If A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}] and B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}] , then (A+B)^(2)=

Show that |(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2))| is divisible by x^(2) .

If f(x)=2x^(2)+3x-5 , then prove that f'(0)+3f'(-1)=0

Show that |(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2))| is divisible by x^(4)

Consider the function f(x) = |{:(a^(2)+x,,ab,,ac),(ab,,b^(2)+x,,bc),(ac,,bc,,c^(2)+x):}| In which of the following interval f(x) is strictly increasing

Consider the function f(x) = |{:(a^(2)+x,,ab,,ac),(ab,,b^(2)+x,,bc),(ac,,bc,,c^(2)+x):}| which of the following is true ?

Consider the function f(x) = |{:(a^(2)+x,,ab,,ac),(ab,,b^(2)+x,,bc),(ac,,bc,,c^(2)+x):}| Which of the following is true ?

Prove that {:[( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) ]:} =4a^(2) b^(2) c^(2)

Show that |{:(a^2 + x^2 , ab, ac),(ab, b^2 + x^2 , bc),(ac, bc, c^2 +x^2):}| is divisible by x^4