Home
Class 12
MATHS
If e^y(x+1)=1,s howt h a t(d^2y)/(dx^2)=...

If `e^y(x+1)=1,s howt h a t(d^2y)/(dx^2)=((dy)/(dx))^2dot`

Text Solution

Verified by Experts

Given relation is `e^(y)(x+1)=1.`
Differentiating both sides w.r.t. x, we get
`(x+1)e^(y)(dy)/(dx)+e^(y).1=0`
`therefore" "(dy)/(dx)=-(1)/(x+1)`
Differentiating again w.r.t. x both sides, we get
`(d)/(dx)((dy)/(dx))=(d)/(dx)(-(1)/(x+1))`
`therefore" "(d^(2)y)/(dx^(2))=(1)/((x+1)^(2))`
`"From (1) and (2), we get "(d^(2)y)/(dx^(2))=((dy)/(dx))^(2).`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Single)|137 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.7|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2

(a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

If y=xlog(x/(a+b x)),t h e nx^3(d^2y)/(dx^2)= (a) (x(dy)/(dx)-y) ^2 (b) x (dy/dx)-y (c) y(dy/dx)-x (d) (y(dy/dx)-x)^2

If y= e^(a cos^(-1)x), -1 le x le 1 , show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0 .

If x=logp and y=1/p ,then (a) (d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+y=0 (c) (d^2y)/(dx^2)+(dy)/(dx)=0 (d) (d^2y)/(dx^2)-(dy)/(dx)=0

(dy)/(dx) = (2xy)/(x^(2)-1-2y)

Find the order and degree of the following differential equations. i) (dy)/(dx)+y=1/((dy)/(dx)) , ii) e^((d^(3)y)/(dx^(3)))-x(d^(2)y)/(dx^(2))+y=0 , iii) sin^(-1)((dy)/(dx))=x+y , iv) log_(e)((dy)/(dx))=ax+by v) y(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-4y(dy)/(dx)=0

In which of the following differential equation degree is not defined? (a) (d^2y)/(dx^2)+3(dy/dx)^2=xlog((d^2y)/(dx^2)) (b) ((d^2y)/(dx^2))^2+(dy/dx)^2=xsin((d^2y)/(dx^2)) (c) x=sin((dy/dx)-2y),|x|<1 (d) x-2y=log(dy/dx)

Find the order and degree, if defined, of each of the following differential equations: (i) (dy)/(dx) - cos x = 0 (ii) xy (d^(2)y)/(dx^(2)) + x((dy)/(dx))^(2) - y (dy)/(dx) = 0 (iii) y''' + y^(2) + e^(y)' = 0

If y= 3e^(2x)+2e^(3x) , prove that (d^(2)y)/(dx^(2))-5(dy)/(dx)+6y=0 .