Home
Class 12
MATHS
If y=log (1+ sin x), prove that y(4)+y(...

If y=log (1+ sin x), prove that `y_(4)+y_(3)y_(1)+y_(2)^(2)=0`.

Text Solution

Verified by Experts

`y=log (1+ sin x)" (1)"`
`y_(1)=(cos x)/(1+ sin x)" (2)"`
`y_(2)=(-sin x (1+ sin x)-cos x cos x)/((1+sin x)^(2))`
`=(-(1+ sin x))/(1+ sin x)^(2)`
`=-(1)/((1+ sin x))" (3)"`
`y_(3)=(cos x)/((1+ sin x)^(2))=(cos x)/(1+ sin x)xx(1)/(1+ sin x)=-y_(1)y_(2)" (4)"`
`therefore" "y_(4)=-y_(2)^(2)-y_(1)y_(3)`
`"or " y_(4)+y_(3)y_(1)+y_(2)^(2)=0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Single)|137 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.7|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

(a) If y=cos(msin^(-1)x) prove that (1-x^(2))y_(3)-3xy_(2)+(m^(2)-1)y_(1)=0 (b) Find y'' if x^(4)+y^(4)=16 .

If y = cos (m sin^(-1) x), prove that (1-x^2)y_3 -3 xy_2 + ( m^2 -1) y_1=0

If y= 3 cos (log x)+4 sin(log x) , show that x^(2)y_(2)+xy_(1)+y=0 .

If y= 5 cos x-3 sin x , prove that (d^(2)y)/(dx^(2))+y=0 .

If y= A sin x+ B cos x , then prove that (d^(2)y)/(dx^(2))+y=0 .

If y = sin (m sin^(-1) x), prove that (1 - x^2)y_2 -xy_1 + m^2 y = 0

A triangle has vertices A_(i) (x_(i),y_(i)) for i= 1,2,3,. If the orthocenter of triangle is (0,0) then prove that |{:(x_(2)-x_(3),,y_(2)-y_(3),,y_(1)(y_(2)-y_(3))+x_(1)(x_(2)-x_(3))),(x_(3)-x_(1) ,,y_(3)-y_(1),,y_(2)(y_(3)-y_(1))+x_(2)(x_(3)-x_(1))),( x_(1)-x_(2),,y_(1)-y_(2),,y_(3)(y_(1)-y_(2))+x_(3)(x_(1)-x_(2))):}|=0

If y=(cos^(-1) x)^(2) prove that (1-x^(2)) (d^(2)y)/(dx^(2)) -x(dy)/(dx) -2=0 . Hence find y_(2) when x=0.

If y= 2^((1)/(log_(x)4)) then prove that x=y^(2) .

If e^(cot^(-1)x) Prove that (1+x^(2))y_(2) +(2x + 1)y_(1) = 0 .