Home
Class 12
MATHS
If A is a square matrix and e^a is defin...

If A is a square matrix and `e^a` is defined as `e^A=1+A^2/(2!)+A^3/(3!)...........oo=1/2[f(x) ,g(x) and g(x) ,f(x)],` where `A=[(x,x),(x,x)].` and I being the identity matrix then `int (g(x))/(f(x))dx=`

A

`(e^(x))/(2)(sinx-cosx)`

B

`(e^(2x))/(5)(2sinx-cosx)`

C

`(e^(x))/(5)(sin2x-cos2x)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`A=[(x,x),(x,x)]`
`impliesA^(2)=[(2x^(2),2x^(2)),(2x^(2),2x^(2))],A^(3)=[(2^(2)x^(3),2^(2)x^(3)),(2^(2)x^(3),2^(2)x^(3))]` and so on
Then `e^(A)=I+A+(A^(2))/(2!)+(A^(3))/(3!)+ … +`
`=[(1+x+(2x^(2))/(2!)+(2^(2)x^(3))/(3!)+ ... ,x+(2x^(2))/(2!)+(2^(2)x^(3))/(3!)+ ...),(x+(2x^(2))/(2!)+(2^(2)x^(3))/(3!)+ ..., 1+x+(2x^(2))/(2!)+(2^(2)x^(3))/(3!)+ ...)]`
`=[((1)/(2)(1+2x+(2^(2)x^(2))/(2!)+(2^(3)x^(3))/(3!)+ ...)+(1)/(2) ,(1)/(2)(1+2x+(2^(2)x^(2))/(2!)+ ...)-(1)/(2)),((1)/(2)(1+2x+(2^(2)x^(2))/(2!)+(2^(3)x^(3))/(3!)+ ...)-(1)/(2) ,(1)/(2)(1+2x+(2^(2)x^(2))/(2!)+ ...)+(1)/(2))]`
`=(1)/(2)[(e^(2x)+1,e^(2x)-1),(e^(2x)-1,e^(2x)+1)]`
` :. f(x)=e^(2x)+1 and g(x)=e^(2x)-1`
`int(g(x)+1)sinx dx=inte^(2x) sinx dx=(e^(2x))/(5)(2sinx-cosx)`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|10 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int[f(x)g^(x)-f^(x)g(x)]dx

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

If int f (x) dx = g (x) +c, then int f(x)g' (x)dx

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

If f (x) = 2x-3 and g(x)= x^(2) +x-2 then go f(x) is

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The domain of the function sqrt((f(x))/(g(x))) is

f( x )={ x+1,x 0 and g(x)={ x 3 x 1 find f(g(x)) and its domain and range

If f(x)=sinx+cosx and g(x)=x^2-1 , then g(f (x)) is invertible in the domain .

CENGAGE-INDEFINITE INTEGRATION-Exercise (Comprehension)
  1. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  2. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  3. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  4. If A is a square matrix and e^a is defined as e^A=1+A^2/(2!)+A^3/(3!)....

    Text Solution

    |

  5. If A is a square matrix and e^a is defined as e^A=1+A^2/(2!)+A^3/(3!)....

    Text Solution

    |

  6. If A is a square matrix and e^a is defined as e^A=1+A^2/(2!)+A^3/(3!)....

    Text Solution

    |

  7. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  8. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  9. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  10. Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

    Text Solution

    |

  11. Let f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))and f(0)=0. The va...

    Text Solution

    |

  12. If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log(e)...

    Text Solution

    |

  13. If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log(e)...

    Text Solution

    |

  14. If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f...

    Text Solution

    |

  15. If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f...

    Text Solution

    |

  16. Consider two differentiable functions f(x),g(x) satisfying 6intf(x)...

    Text Solution

    |

  17. Consider two differentiable functions f(x),g(x) satisfying 6intf(x)...

    Text Solution

    |