Home
Class 12
MATHS
If area of A B C() and angle C are give...

If area of ` A B C()` and angle C are given and if the side `c` opposite to given angle is minimum, then `a=sqrt((2)/(sinC))` (b) `b=sqrt((2)/(sinC))` `a=sqrt((4)/(sinC))` (d) `b=sqrt((4)/(sinC))`

A

`a = sqrt((2Delta)/(sinC))`

B

`b = sqrt((2Delta)/(sinC))`

C

`a = (4Delta)/(sinC)`

D

`b = (4Delta)/(sin^(2)C)`

Text Solution

Verified by Experts

The correct Answer is:
A, B

`c^(2) = a^(2) + b^(2) - 2ab cos C`
`=(a - b)^(2) + 2ab (1-cos C)`
`=(a -b)^(2) + (4Delta)/(sinC) (1-cosC)`
For c to be minium, `a = b`
Also, `Delta = (1)/(2) ab sin C`
`rArr a^(2) = (2Delta)/(sin C) = b^(2)`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise (Comprehension)|34 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise (Matrix)|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise (Single)|80 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

In triangle A B C , if angle c is 90 and the area of triangle is 30 sq.units,then minimum possible value of hypotenuse c is equal to (a) 30sqrt(2) (b) 60sqrt(2) (c) 120sqrt(2) (d) 2sqrt(30)

In any triangle ABC prove that (a^(2)sin(B-C))/(sinA)+(b^(2)sin(C-A))/(sinB)+(c^(2)sin(A-B))/(sinC)=0

Let i=int_a^b(x^4-2x^2)dx for (a,b) which given integration is minimum (bgt0) (a) (sqrt2,-sqrt2) (b) (0,sqrt2) (c) (-sqrt2,sqrt2) (d) (sqrt2,0)

If the angle A ,Ba n dC of a triangle are in an arithmetic propression and if a , ba n dc denote the lengths of the sides opposite to A ,Ba n dC respectively, then the value of the expression a/csin2C+c/asin2A is 1/2 (b) (sqrt(3))/2 (c) 1 (d) sqrt(3)

Radius of the circle that passes through the origin and touches the parabola y^2=4a x at the point (a ,2a) is (a) 5/(sqrt(2))a (b) 2sqrt(2)a (c) sqrt(5/2)a (d) 3/(sqrt(2))a

If sin2theta=cos3theta"and"theta is an acute angle, then sintheta equal (a) (sqrt(5)-1)/4 (b) -((sqrt(5)-1)/4) (c) (sqrt(5)+1)/4 (d) (-sqrt(5)-1)/4

The function f(x)=x(x+4)e^(-x//2) has its local maxima at x=adot Then (a) a=2sqrt(2) (b) a=1-sqrt(3) (c) a=-1+sqrt(3) (d) a=-4

A rectangle is inscribed in an equilateral triangle of side length 2a units. The maximum area of this rectangle can be sqrt(3)a^2 (b) (sqrt(3)a^2)/4 a^2 (d) (sqrt(3)a^2)/2

CENGAGE-PROPERTIES AND SOLUTIONS OF TRIANGLE-Exercise (Multiple)
  1. In triangle, A B Cif2a^2b^2+2b^2c^2=a^2+b^4+c^4, then angle B is equal...

    Text Solution

    |

  2. If in triangle ABC, a, c and angle A are given and c sin A lt a lt c, ...

    Text Solution

    |

  3. If area of A B C() and angle C are given and if the side c opposite t...

    Text Solution

    |

  4. If represents the area of acute angled triangle ABC, then sqrt(a^2b^2...

    Text Solution

    |

  5. Sides of DeltaABC are in A.P. If a lt "min" {b,c}, then cos A may be e...

    Text Solution

    |

  6. If the angles of a triangle are 30^0a n d45^0 and the included side is...

    Text Solution

    |

  7. Lengths of the tangents from A,B and C to the incircle are in A.P., th...

    Text Solution

    |

  8. C F is the internal bisector of angle C of A B C , then C F is equal ...

    Text Solution

    |

  9. The incircle of DeltaABC touches side BC at D. The difference between ...

    Text Solution

    |

  10. A circle of radius 4 cm is inscribed in DeltaABC, which touches side B...

    Text Solution

    |

  11. If H is the orthocentre of triangle A B C ,R= circumradius andP=A H+B ...

    Text Solution

    |

  12. Let ABC be an isosceles triangle with base BC. If r is the radius of t...

    Text Solution

    |

  13. If inside a big circle exactly n(nlt=3) small circles, each of radius ...

    Text Solution

    |

  14. The area of a regular polygon of n sides is (where r is inradius, R is...

    Text Solution

    |

  15. In acute angled triangle A B C ,A D is the altitude. Circle drawn with...

    Text Solution

    |

  16. If A is the area and 2s is the sum of the sides of a triangle, then (a...

    Text Solution

    |

  17. In A B C , internal angle bisector of /A meets side B C in DdotD E|A ...

    Text Solution

    |

  18. In triangle ABC, a = 4 and b = c = 2 sqrt(2). A point P moves within t...

    Text Solution

    |

  19. BC is the base of the DeltaABC is fixed and the vertex A moves, satisf...

    Text Solution

    |

  20. If D, E and F be the middle points of the sides BC,CA and AB of the De...

    Text Solution

    |