Home
Class 12
MATHS
Prove the following trigonometric identi...

Prove the following trigonometric identities: `(cosec A - sin A)(sec A - cos A)(tan A + cot A) = 1`

Text Solution

Verified by Experts

The correct Answer is:
`a rarr p, r, s; b rarr p`


Given `2(a^(2) -b^(2)) = c^(2)`
`rArr 2 (sin^(2) X - sin^(2)Y) = sin^(2)Z`
`rArr 2 sin (X + Y) sin (X - Y) = sin^(2) Z`
`rArr 2 sin (pi - Z) sin (X -Y) = sin^(2) Z`
`rArr sin (X - Y) = (sin Z)/(2)`...(i)
`:. lamda = (sin (X -Y))/(sin Z) = (1)/(2)`
Now `cos (n pi lamda) = 0`
`rArr cos ((n pi)/(2)) = 0`
`:. n = 1, 3, 5`

`1 + cos 2X - 2 cos 2Y = 2 sin X sin Y`
`2 cos^(2) X - 2 cos 2Y = 2 sin X sin Y`
`1- sin^(2) X - 1 + 2 sin^(2) Y = sin X sin Y`
`sin^(2) X + sin X sin Y = 2 sin^(2) Y`
`sin X (sin X + sin Y) = 2 sin^(2) Y`
`rArr a(a +b) = 2b^(2)`
`rArr a^(2) + ab - 2b^(2) = 0`
`rArr ((a)/(b))^(2) + (a)/(b) - 2 = 0`
`rArr (a)/(b) = -2, 1`
`rArr (a)/(b) = 1`
Note : Solutions of the remaining parts are given in their respecitive chapters.
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Main Previous Year|2 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

Prove that (cosec A - sin A ) (sec A -cos A) = ( 1)/( tan A +cot A)

The value of (cosec x-sin x) (sec x-cos x) (tan x+cot x) is

Prove the following identities : 1 - (sin^(2) A)/ (1 + cos A) = cos A

Prove: cosec^2A -cos^2 A =(sec^2A -sin^2A)/(tan^2 A)

Prove that (sin A)/(sec A + tan A -1)+ (cos A)/("cosec "A +cot A-1)=1

Prove the following: sec^2 theta + cosec^2 theta = sec^2 theta xx cosec^2 theta

Prove that following identities (sin^(3)A+cos^(3))/(sinA+cosA)+(sin^(3)A-cos^(3)A)/(sinA-cosA)=2

Prove the following: (sin theta - cos theta + 1 )/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)

Prove the following: cot^2 theta - tan^2 theta = cosec^2 theta - sec^2 theta