Home
Class 12
MATHS
If b >1,sint >0,cost >0a n d(log)b(sint)...

If `b >1,sint >0,cost >0a n d(log)_b(sint)=x ,t h e n(log)_b(cost)` is equal to `(a) 1/2(log)_b(1-b^(2x))` (b) `2log(1-b^(x/2))` `(log)_bsqrt(1-b^(2x))` (d) `sqrt(1-x^2)`

A

`1/2log_b(1-b^(2x))`

B

`2log(1-b^(x//2))`

C

`log_bsqrt(1-b^(2x))`

D

`sqrt(1-x^2)`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`log_bsin_t=xorsint=b^x`
Let `log_b(cost)=y,then b^y=cost`
`or b^(2y)=cos^2t=1-sin^2t=1-b^(2x)`
`or 2y=log_b(1-b^(2x))`
`or y=1/3log_b(1-b^(2x))=log_bsqrt(1-b^(2x))`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Matrix)|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If (log)_4 5=aa n d(log)_5 6=b , then (log)_3 2 is equal to 1/(2a+1) (b) 1/(2b+1) (c) 2a b+1 (d) 1/(2a b-1)

If f(x)=(log)_x(lnx),t h e nf^(prime)(x) at x=e is equal to 1/e (b) e (c) 1 (d) zero

If f(x)=(log)_x(lnx),t h e nf^(prime)(x) at x=e is equal to 1/e (b) e (c) 1 (d) zero

Prove that "log"_(a^(2))a " log"_(b^(2)) b" log_(c^(2))c = (1)/(8) .

If (log)_(10)5=aa n d(log)_(10)3=b ,t h e n (A) (log)_(30)8=(3(1-a))/(b+1) (B) (log)_(40)15=(a+b)/(3-2a) (C) (log)_(243)32=(1-a)/b (d) none of these

If 3^x=4^(x-1) , then x= (2(log)_3 2)/(2(log)_3 2-1) (b) 2/(2-(log)_2 3) 1/(1-(log)_4 3) (d) (2(log)_2 3)/(2(log)_2 3-1)

If (log)_(10)2=a ,(log)_(10)3=bt h e n(log)_(0. 72)(9. 6) in terms of a and b is equal to (a) (2a+3b-1)/(5a+b-2) (b) (5a+b-1)/(3a+2b-2) (c) (3a+b-2)/(2a+3b-1) (d) (2a+5b-2)/(3a+b-1)

lim_(x->oo)[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to (a)0 (b) 1/2 (c) log 2 (d) e^4

The value of ((log)_2 24)/((log)_(96)2)-((log)_2 192)/((log)_(12)2) is 3 (b) 0 (c) 2 (d) 1

If the equation 2^x+4^y=2^y + 4^x is solved for y in terms of x where x<0, then the sum of the solution is (a) x(log)_2(1-2^x) (b) x+(log)_2(1-2^x) (c) (log)_2(1-2^x) (d) x(log)_2(2^x+1)