Home
Class 12
MATHS
Four numbers n1,n2,n3andn4 are given as ...

Four numbers `n_1,n_2,n_3andn_4` are given as `n_1=sin15^@-cos15^@,n_2=cos93^@+sin93^@,n_3=tan27^@-cot27^@,n_4=cot127^@+tan127^@`,Then

A

`n_1lt0`

B

`n_2lt0`

C

`n_3lt0`

D

`n_4lt0`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`n_1=sin15^@-cos15^@lt-ve" "(cos15^@gtsin15^@)`
`n_2=cos93^@+sin93^@`
`=-sin3^@+cos3@gt0" "(cos3^@gtsin3^@)`
`n_3=tan27^@-cot27^@lt0" "(tan27^@ltcot27@)`
`n_4=cot127^@+tan127^@lt0" "(tan127^@,cot127^@lt0)`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Matrix)|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Four numbers n_1,n_2,n_3a n dn_4 are given as n_1=sin15^0-cos15^0,n_2=cos93^0+sin93^0,n_3=tan27^0-cot27^0,n_4=cot127^0+tan127^0dot n_1<0 (b) n_2<0 (c) n_3<0 (d) n_4<0

Find sin15^@ ,cos15^@ ,tan15^@ ,hence evaluate cot75^@ +tan75^@ .

Let n_1ltn_2ltn_3ltn_4ltn_5 be positive integers such that n_1+n_2+n_3+n_4+n_5="20. then the number of distinct arrangements n_1, n_2, n_3, n_4, n_5 is

Prove that n C_0+^n C_3+^n C_6+=1/3(2^n+2cos(npi)/3) .

sin (n +1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

sin^2 n theta- sin^2 (n-1)theta= sin^2 theta where n is constant and n != 0,1

The expression sum_(n=1)^(oo)cot^(-1)(n^(2)-3n+3) simplifies to

Evaluate the following: 1. sin^(-1)(s i n(2pi)/3) 2. cos^(-1)(c o s(7pi)/6) 3. tan^(-1)(t a n(2pi)/3)