Home
Class 12
MATHS
If 0 lt phi lt (pi)/(2) , x= sum(n=0)...

If `0 lt phi lt (pi)/(2) , x= sum_(n=0)^(oo) cos^(2n) phi ,y sum _(n=0)^(oo) sin ^(2n) phi and z = sum _(n=0) ^(oo) cos ^(2n) phi sin ^(2n) phi , ` then

A

`xyz=xz+y`

B

`xyz=xy+z`

C

`xyz=x+y+z`

D

`xyz=yz+x`

Text Solution

Verified by Experts

The correct Answer is:
B, C

All are infinte geometric progression with common ratio lt 1
`x=1/(1-cos^2phi)=1/sin^2phi,y=1/(1-sin^2phi)=1/cos^2phi`,
`z=1/(1-cos^2phisin^2phi)`
Now, `xy+z=1/(sin^2phicos^2phi)+1/(1-sin^2phicos^2phi)`
`=1/(sin^2phicos^2phi(1-sin^2phicos^2phi))`
`or xy+z=xyz ...(i)`
Clearly, `x+y=(sin^2phi+cos^2phi)/(sin^2phicos^2phi)=xy`
`:. x+y+z=xyz` [using Eq. (i)]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Matrix)|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If x = sum_(n = 0)^(infty) cos ^(2n) theta, " "y = sum_(n = 0)^(infty) sin^(2n) theta and z = sum_(n = 0)^(infty) cos^(2n) theta sin^(2n)theta, 0 lt theta lt (pi)/(2) , then show that xyz = x + y + z [ Hint : use the formula 1 + x + x^(2) + x^(3) +... =(1)/(1 - x) , where |x| lt 1 ]

If xsum_(n=0)^(oo)cos^(2n)theta,y=sum_(n=0)^(oo)sin^(2n)thetaandz=sum_(n=0)^(oo)cos^(2n)thetasin^(2n)theta,ltthetalt(pi)/(2), then show that xyz = x + y + z.

Find sum_(n=1)^(oo)1/(n^2+5n+6)

sin (n +1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

If the sum of the series sum_(n=0)^oor^n ,|r|<1 is s , then find the sum of the series sum_(n=0)^oor^(2n) .

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

The expression sum_(n=1)^(oo)cot^(-1)(n^(2)-3n+3) simplifies to