Home
Class 12
MATHS
If cos e cA+secA=cos e c B+s e cB , prov...

If `cos e cA+secA=cos e c B+s e cB ,` prove that: `"tanAtanB"=cot(A+B)/2`

Text Solution

Verified by Experts

`co sec A+secA=co secB+secB`
or `(1)/(sinA)-(1)/(sinB)=(1)/(cosB)-(1)/(cosA)`
or `(sinB-sinA)/(sinA sinB)=(cosA-cosB)/(cos A cos B)`
or `(2sin((B-A)/(2))cos((A+B)/(2)))/(sinA sinB)=(2sin((B-A)/(2))cos((A+B)/(2)))/(sinA cosB)`
or `(cos((A+B)/(2)))/(cos((A+B)/(2)))=(sinAsinB)/(cos A cos B)`
or `tan A tan B=cot((A+B)/(2))`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.4|26 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.5|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If cos(A+B)sin(C+D)=cos(A-B)sin(C-D) , prove that cot A cot B cot C=cotD .

If I is the incenter of a triangle ABC, then the ratio I A : I B : I C is equal to a) cos e c A/2: cos e c B/2: cos e c C/2 b) sinA/2:sinB/2:sinC/2 c) secA/2:secB/2:secC/2 d) none of these

If A + B + C = 180^(@) , prove that sin A + sin B + sin C = 4 cos (A)/(2) cos"" (B)/(2) cos"" (C )/(2)

If a_1, a_2, a_n are in A.P. with common difference d!=0 , then the sum of the series sind[seca_1seca_2+(sec)_2seca_3+....+s e ca_(n-1)(sec)_n] is : a. cos e ca_n-cos e ca b. cota_n-cota c. s e ca_n-s e ca d. t a na_n-t a na

If cos e c^(-1)(cos e cx) and cos e c(cos e c^(-1)x) are equal functions, then the maximum range of value of x is

If 2sec^2A-sec^4A-2cos e c^2A+cos e c^4A=(15)/4,t h e n tan A is equal 1//sqrt(2) (b) 1/2 (c) 1/2sqrt(2) (d) -1/(sqrt(2))

In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B) , then prove that cos 2A,cos2B and cos 2C are in AP.

Expand cos ( A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = (pi)/(2) .

In A B C , prove that cos e c A/2+cos e c B/2+cos e c C/2geq6.