Home
Class 12
MATHS
If y sinphi = x sin (2theta + phi) show ...

If `y sinphi = x sin (2theta + phi)` show that `(x + y) cot (theta + phi) = (y-x) cot theta`.

Text Solution

Verified by Experts

`y sin psi=x sin(2theta+psi)`
or `(x)/(y)=(sin psi)/(sin(2theta+psi))`
or `(x+y)/(y-x)=(sin psi+sin(2theta+psi))/(sin(2theta+psi)-sin psi)`
[applying componendo and dividendo) ltbr. `=(2sin(theta+psi)cos theta)/(2sin thetacos(theta+psi))`
`rArr (x+y)cot(theta+psi)=(y-x)cot theta`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.4|26 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.5|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

" If "|{:(sin theta cos phi,,sin theta sin phi,,cos theta),(cos theta cos phi,, cos theta sin phi,,-sin theta),(-sin theta sin phi,,sin theta cos phi,,theta):}| then

If theta + phi = alpha and tan theta = k tan phi , then prove that sin (theta - phi) = (k - 1)/(k + 1) sin alpha .

Choose the odd one out (1) x = a cos theta , y = a sin theta (2) theta (3) 0 ge theta ge 2 pi (4) ( a cos theta , b sin theta)

If 3tanthetatanphi=1 , then prove that 2cos(theta+phi) = cos(theta-phi)

If p and q are the lengths of perpendiculars from the origin to the lines x cos theta - y sin theta = k cos 2 theta " and " x sec theta + y cosec theta = k , respectively, prove that p^(2) + 4q^(2) = k^(2) .

cos 2theta cos 2phi + sin^(2) (theta - phi ) - sin^(2) ( theta + phi) is equal to

If theta + phi =alpha and tan theta = k tan phi , then prove that sin(theta - phi) =(k-1)/(k+1) sin alpha .

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )