Home
Class 12
MATHS
The base vectors veca(1), veca(2) and ve...

The base vectors `veca_(1), veca_(2)` and `veca_(3)` are given in terms of base vectors `vecb_(1), vecb_(2)` and `vecb_(3)` as `veca_(1) = 2vecb_(1)+3vecb_(2)-vecb_(3)`, `veca_(2)=vecb_(1)-2vecb_(2)+2vecb_(3)` and `veca_(3) =-2vecb_(1) + vecb_(2)-2vecb_(3)`, if `vecF = 3vecb_(1)-vecb_(2)+2vecb_(3)`, then vector `vecF` in terms of `veca_(1), veca_(2)` and `veca_(3)` is

A

`vecF=3veca_(1) + 2veca_(2) + 5veca_(3)`

B

`vecF=3veca_(1) - 5veca_(2)-2veca_(3)`

C

`vecF=3veca_(1)+5veca_(2)+3veca_(3)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`veca_(1)=2vecb_(1)+3vecb_(2)-vecb_(3)`
`veca_(2)=vecb_(1)-2vecb_(2)+2vecb_(3)`
`veca_(3)=-2vecb_(1)+vecb_(2)-2vecb_(3)`
Let `vecF = lambda_(1)veca_(1)+lambda_(2)-2lambda_(3)vecb_(1)+(3lambda_(1)-2lambda_(2)+lambda_(3))vecb_(2)+(-lambda_(1)+2lambda_(2)-2lambda_(3))vecb_(3)=3vecb_(1)-vecb_(2)+2vecb_(3)`
Comparing coefficients of `b_(1),b_(2)` and `b_(3)`
(`therefore vecb_(1),vecb_(2)` and `vecc_(3)` are base vectors hence non-coplanar)
`2lambda_(1)+lambda_(2)-2lambda_(3)=-1`
`-lambda_(1)+2lambda_(2)-2lambda_(2)=2`
Solving above equations, we get
`lambda_(1)=2`
`lambda_(2)=5`
`lambda_(3)=3`
`therefore vecF=2veca_(1)+5veca_(2)+3veca_(3)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Question Bank|17 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos

Similar Questions

Explore conceptually related problems

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

Let veca vecb and vecc be non- zero vectors aned vecV_(1) =veca xx (vecb xx vecc) and vecV_(2) = (veca xx vecb) xx vecc .vectors vecV_(1) and vecV_(2) are equal . Then

The vectors veca-vecb,vecb-vecc,vecc-veca are

For any two vectors veca and vecb prove that |vecaxxvecb|^(2)+(veca*vecb)^(2)=|veca|^(2)|vecb|^(2)

For any two vectors veca and vecb|veca X vecb|^(2)+|veca.vecb| is:

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If |veca|=5|vecb|=4 and |veca+vecb|=1 then |veca-vecb|= ?

if veca , vecb and vecc are three non-zero, non- coplanar vectors and vecb_(1)=vecb-(vecb.veca)/(|veca|^(2))veca,vecb_(2)=vecb+(vecb.veca)/(|veca|^(2))veca,vecc_(1)=vecc-(vecc.veca)/(|veca|^(2))veca+ (vecb.vecc)/(|vecc|^(2))vecb_(1),vecc_(2)=vecc-(vecc.veca)/(|veca|^(2)) veca-(vecbvecc)/(|vecb_(1)|^(2))vecb_(1),vecc_(3)=vecc- (vecc.veca)/(|vecc|^(2))veca + (vecb.vecc)/(|vecc|^(2))vecb_(1), vecc_(4)=vecc - (vecc.veca)/(|vecc|^(2))veca= (vecb.vecc)/(|vecb|^(2))vecb_(1) , then the set of orthogonal vectors is

If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3vecb)xx(3veca - 2vecb)=vec0 then angle between veca and vecb is