Home
Class 12
MATHS
Given three vectors veca, vecb and vecc ...

Given three vectors `veca, vecb` and `vecc` are non-zero and non-coplanar vectors. Then which of the following are coplanar.

A

`veca+vecb, vecb+vecc,vecc+veca`

B

`veca-vecb,vecb+vecc,vecc+veca`

C

`veca+vecb,vecb-vecc,vecc-veca`

D

`veca+vecb,vecb+vecc,vecc-veca`

Text Solution

Verified by Experts

The correct Answer is:
B, D

`vecc+veca=(vecb+vecc)+(veca-vecb)`
`veca+vecb=(vecb-vecc)+(vecc+veca)`
`vecb+vecc=(veca+vecb)+(vecc-veca)`
So vectors in option (b), (c ) and (d) are coplanar.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Question Bank|17 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are three non-zero vectors, then which of the following statement(s) is/are true?

If veca, vecb and vecc are three non-zero, non-coplanar vectors,then find the linear relation between the following four vectors : veca-2vecb+3vecc, 2veca-3vecb+4vecc, 3veca-4vecb+ 5vecc, 7veca-11vecb+15vecc .

Let vecr = (veca xx vecb)sinx + (vecb xx vecc)cosy+(vecc xx veca) , where veca,vecb and vecc are non-zero non-coplanar vectors, If vecr is orthogonal to 3veca + 5vecb+2vecc , then the value of sec^(2)y+"cosec"^(2)x+secy" cosec "x is

Given three vectors e veca, vecb and vecc two of which are non-collinear. Futrther if (veca + vecb) is collinear with vecc, (vecb +vecc) is collinear with veca, |veca|=|vecb|=|vecc|=sqrt2 find the value of veca. vecb + vecb.vecc+vecc.veca

The vectors veca-vecb,vecb-vecc,vecc-veca are

If vecP = (vecbxxvecc)/([vecavecbvecc]),vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecp+ vecq+vecr) is

If non-zero vectors veca and vecb are equally inclined to coplanar vector vecc , then vecc can be

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

Statement 1 : Let A(veca), B(vecb) and C(vecc) be three points such that veca = 2hati +hatk , veb = 3hati -hatj +3hatk and vecc =-hati +7hatj -5hatk . Then OABC is tetrahedron. Statement 2 : Let A(veca) , B(vecb) and C(vecc) be three points such that vectors veca, vecb and vecc are non-coplanar. Then OABC is a tetrahedron, where O is the origin.