Home
Class 12
MATHS
int((cosx)^(n-1))/((sinx)^(n+1))dx= ...

`int((cosx)^(n-1))/((sinx)^(n+1))dx=` (A) `-cot^n x/n+c` (B) `-cot^n x/(n+1)+c` (C) `cot^n x/n+c` (D) `cot^n x/(n+1)+c`

A

`(cot^(n)x)/(n)`

B

`(-cot^(n-1)x)/(n-1)`

C

`(-cot^(n)x)/(n)`

D

`(cot^(n-1)x)/(n-1)`

Text Solution

Verified by Experts

The correct Answer is:
C

`int(cos^(n-1)x)/(sin^(n+1)x)dx=int cot^(n-1)x" cosec"^(2)xdx`
`=(-cot^(n)x)/(n)+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (A) 1+x^n (B) 1+x^-n (C) x^n+x^-n (D) x^n-x^-n

Let f(x) = (x^2 - 1)^(n+1) + (x^2 + x + 1) . Then f(x) has local extremum at x = 1 , when n is (A) n = 2 (C) n = 4 (B) n = 3 (D) n = 5

sum_(k=1)^ook(1-1/n)^(k-1)= a. n(n-1) b. n(n+1) c. n^2 d. (n+1)^2

If sinx+cos e cx=2, then sin^n x+cos e c^n x is equal to 2 (b) 2^n (c) 2^(n-1) (d) 2^(n-2)

If lim_(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to 4 (b) 1 (c) 2 (d) 3

int_0^x|sint|dt , where x in (2npi,(2n+1)pi) , ninN ,is equal to (A) 4n-cosx (B) 4n-sinx (C) 4 n+1-cosx (D) 4n-1-cosx

If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx) is equal to (a) y (b) y+(x^n)/(n !) (c) y-(x^n)/(n !) (d) y-1-(x^n)/(n !)

If f(x+1)+f(x-1)=2f(x)a n df(0),=0, then f(n),n in N , is nf(1) (b) {f(1)}^n (c) 0 (d) none of these

If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to n(n-1)y (b) n(n+1)y (c) n y (d) n^2y

xy=( x+y )^n and dy/dx = y/x then n= 1 b. 2 c. 3 d. 4