Home
Class 12
MATHS
If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3...

If `int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx`
`=(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C,` then
The value of `underset(x to oo)(lim)tan^(-1)sqrt(f(x))` is

A

`cos^(-1)sqrt(1+(1)/(x))`

B

`tan^(-1)sqrt(x+(1)/(x)+1)`

C

`cot^(-1)sqrt(x+(1)/(x))`

D

`sin^(-1)sqrt(x+(1)/(x)+1)`

Text Solution

Verified by Experts

The correct Answer is:
B

We have `int(x(x-1))/((x^(2)+)(x+1)sqrt(x^(3)+x^(2)+x))dx`
`=int(x(x^(2)-1))/((x^(2)+1)(x+1)^(2)sqrt(x^(3)+x^(2)+x))dx`
`=int(x^(3)(1-(1)/(x^(2))))/(x^(3)(x+(1)/(x))(sqrtx+(1)/(sqrtx))^(2)sqrt(x+(1)/(x)+1))dx`
`=int((1-(1)/(x^(2))))/((x+(1)/(x))(x+(1)/(x)+2)sqrt(x+(1)/(x)+1))dx`
`I=int(2t)/((t^(2)-1)(t^(2)+1)sqrt(t^(2)))dt`
where `x+(1)/(x)+1=t^(2)`
`=int(2)/((t^(2)-1)(t^(2)+1))dt`
`=int(1)/(t^(2)-1)dt-int(1)/(t^(2)+1)dt`
`=(1)/(2)log|(t-1)/(t+1)|-tan^(-1)t+c`
`=(1)/(2)log|(sqrt(x+(1)/(x)+1)-1)/(sqrt(x+(1)/(x)+1+1))|-tan^(-1)sqrt(x+(1)/(x)+1)+c`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of lim_(x to oo) tan^(-1)sqrt(f(x)) is

Let f(x)=sqrt(1+x^(2)) then

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

Find the range of f(x)=tan^(-1)sqrt((x^2-2x+2))

Evaluate int(log_(e)(x+sqrt(x^(2)+1)))/(sqrt(x^(2)+1))dx.

If x in[-1,(-1)/(sqrt(2))] , then the inverse of the function f(x)=sin^(-1)(2x sqrt(1-x^(2))) is given by

If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C , then

if: f(x)=(sinx)/(sqrt(1+tan^2x))-(cosx)/(sqrt(1+cot^2x)), then find the range of f(x)

d/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))]= 1/(2(1+x)sqrt(x)) (b) 3/((1+x)sqrt(x)) 2/((1+x)sqrt(x)) (d) 3/(2(1+x)sqrt(x))