Home
Class 12
MATHS
int(dx^(3))/(x^(3)(x^(n)+1)) equals...

`int(dx^(3))/(x^(3)(x^(n)+1))` equals

A

`(3)/(n)ln((x^(n))/(x^(n)+1))`

B

`(1)/(n)ln((x^(n))/(x^(n)+1))`

C

`(3)/(n)ln((x^(n)+1)/(x^(n)))`

D

`3nln((x^(n+1))/(x^(n)))`

Text Solution

Verified by Experts

The correct Answer is:
A

`int(dx^(3))/(x^(3)(x^(n)+1))`
`=3int(x^(2)dx)/(x^(3)(x^(n)+1))`
`=3int(dx)/(x(x^(n)+1))`
`=int(x^(n-1))/(x^(n)(x^(n)+1))dx`
`=(3)/(n)int(dt)/(t(t+1))`
`=(3)/(n)int((t+1)-t)/(t(t+1))dt`
`=(3)/(n)int((1)/(t)-(1)/(t+1))dt`
`=(3)/(n)(ln t-ln(t+1))+c`
`=(3)/(n)ln((t)/(t+1))+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(x^(3)-1)/(x^(3)+x) dx is equal to:

int(dx)/(x((logx)^(2)+1)) equals

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to (here C is a constant of intergration)

Choose the correct answer int(dx)/(x(x^(2)+1)) equals

Evaluate: int(dx)/(x^(2/3)(1+x^(2/3)))

Evaluate int(x dx)/(x^(3)sqrt(x^(2)-1)).

Evaluate int(x^(2))/((x-1)^(3)(x+1))dx

int_(1)^(2)(dx)/(x^(2)) is equal to

The value of difinite integral int_(0)^(1) (dx)/(sqrt((x+1)^(3)(3x+1))) equals

int(x+x^(2/3)+x^(1/6))/(x(1+x^(1/3)))dx equals