Home
Class 12
MATHS
int(x^3-x)/(1+x^6)dx is equal to...

`int(x^3-x)/(1+x^6)dx` is equal to

A

`(1)/(6)log.(x^(4)-x^(2)+1)/(x(x^(2)+1))+C`

B

`(1)/(6)tan^(-1).((x^(2)+1)^(2))/(2)+C`

C

`log.(x^(4)-x^(2)+1)/((1+x^(2))^(2))+C`

D

`tan^(-1).((x^(2)+1)^(2))/(2)+C`

Text Solution

Verified by Experts

The correct Answer is:
A

`I=(1)/(2)int(t-1)/(1+t^(3))dt (" where "t=x^(2))`
`=(1)/(2)int((-2)/(3(1+t))+(1)/(3)((2t-1))/(t^(2)-t+1))dt " (After partial fractions)"`
`=(1)/(6).ln(x^(4)-x^(2)+1)/((x^(2)+1)^(2))+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int(x^(3)-1)/(x^(3)+x) dx is equal to:

int(x^9)/((4x^2+1)^6) dx is equal to

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to (here C is a constant of intergration)

The integral int(1+x-1/x)e^(x+1/x)dx is equal to

int(e^(x)(x-1)(x-lnx))/(x^(2))dx is equal to

int_(1)^(2)(dx)/(x^(2)) is equal to

int(e^(x))/(x)(1+xlogx)dx is equal to

int(sqrt((a+x)/(a-x))+sqrt((a-x)/(a+x)))dx " is equal to "

The value of int_(0)^(1)xcos^(-1)((1-x^2)/(1+x^2)) dx (x>0) is equal to ___________.