Home
Class 12
MATHS
int (x^3-1)/((x^4+1)(x+1)) dx is...

`int (x^3-1)/((x^4+1)(x+1)) dx` is

A

`(1)/(4)ln(1+x^(4))+(1)/(3)ln(1+x^(3))+c`

B

`sinx|-sinx+C`

C

`(1)/(4)ln(1+x^(4))-ln(1+x)+c`

D

`(1)/(4)ln(1+x^(4))+ln(1+x)+c`

Text Solution

Verified by Experts

The correct Answer is:
C

`int(x^(3)-1)/((x^(4)+1)(x+1))dx=int((x^(4)+x^(3))-(x^(4)+1))/((x^(4)+1)(x+1))dx`
`=int(x^(3))/(x^(4)+1)dx-int(1)/(x+1)dx`
`=(1)/(4)ln(x^(4)+1)-ln(x+1)+c`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate int (2x^(3)-1)/(x^(4)+x)dx

int(x^(3)-1)/(x^(3)+x) dx is equal to:

Evaluate: int(x^2-1)/((x^2+1)sqrt(x^4+1))dx

Evaluate: int(x^3+3x+2)/((x^2+1)^2(x+1))dx

Evaluate int(x^(2))/((x-1)^(3)(x+1))dx

Evaluate int (x^2-1)/(x^4+1)dx

The value of int_(-4)^(4) [ tan^(-1)((x^(2))/( x^(4)+1)) +tan^(-1) ((x^(4)+1)/( x^(2))) ] dx is

Evaluate: int(1+x^4)/((1-x^4)^(3/2))dx

Evaluate int(3x-1)/((x-1)(x-2)(x-3))dx

Evaluate : int ((x - 1)^2)/(x^3 + x) dx .