Home
Class 12
MATHS
Evaluate : intsin4x.e^(tan^(2)x)dx...

Evaluate : `intsin4x.e^(tan^(2)x)dx`

Text Solution

Verified by Experts

The correct Answer is:
`-2e^(tan^(2)x)cos^(4)x+C`

`intsin4x.e^(tan^(2)x)dx=4intsinx cosx 2x e^(tan^(2)x)dx`
`=4inttanx.sec^(2)x.cos^(4)x.cos2xe^(tan^(2)x)dx`
`2int(1)/((1+t)^(2))(1-t)/(1+t)e^(t)dt`
(Putting, `tan^(2)x=t rArr 2 tan x. sec^(2)xdx=dt`)
`=-2int((t+1)-2)/((1+t)^(3))e^(t)dt`
`=-2inte^(t)((1)/((1+t)^(2))+(-2)/((1+t)^(3)))dt`
`=(-2e^(t))/((1+t)^(2))+C`
`=-2e^(tan^(2)x)cos^(4)+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Multiple Correct Answer Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Single Correct Answer Type|48 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate intsin2x.e^(cos^(2)x)dx

Evaluate: intsin^4x\ dx

Evaluate: intsin(e^x)d(e^x)

Evaluate: inte^x(1+tanx+tan^2x)dx

Evaluate intsin^(3)x cos^(2)x dx

Evaluate: intsin^2(logx)dx

Evaluate : int x^5 e^(x^2)dx

Evaluate: inta^(x)e^(x)dx

Evaluate: intsin^(-1)sqrt(x/(a+x))dxdot

Evaluate: int(tanx-x)tan^2x dx