Home
Class 12
MATHS
If f(x)dx=g(x) and f^(-1)(x) is differen...

If `f(x)dx=g(x) and f^(-1)(x)` is differentiable, then `intf^(-1)(x)dx` equal to

A

`g^(-1)(x)+C`

B

`xf^(-1)+C`

C

`xf^(-1)(x)-g(f^(-1)(x))+C`

D

`f^(-1)(x)+C`

Text Solution

Verified by Experts

The correct Answer is:
C

`I=intf^(-1)(x)dx=f^(-1)(x).x-intx.((f^(-1))(x))'dx`
Put `f^(-1)(x)=t`
`therefore" "I=f^(-1)(x).x-intf(t).dt`
`therefore" "I=f^(-1).x-g(t)+C`
`=x.f^(-1)(x)-g(f^(-1)(x))+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

f(x)=(x)/(1+|x|) then f is differentiable at

If f (x) =(1)/(x +1) then its differentiate is given by :

Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" and "g(x)+g(a-x)=4 " then " int_(0)^(a)f(x)g(x)dx is equal to

Given f^(prime)(1)=1"and"d/(dx)(f(2x))=f^(prime)(x)AAx > 0 .If f^(prime)(x) is differentiable then there exies a number c in (2,4) such that f''(c) equals

IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1 , then int_(0)^(10)f(10-x)dx is equal to

Differentiate the following : f(x)=x/sqrt(7-3x)

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to

Differentiate the following : f(x) = (x)/(sqrt(7-3x))

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to

The function f(x)=e^x+x , being differentiable and one-to-one, has a differentiable inverse f^(-1)(x)dot The value of d/(dx)(f^(-1)) at the point f(log2) is (a) 1/(1n2) (b) 1/3 (c) 1/4 (d) none of these