Home
Class 12
MATHS
int(e^(x)(x-1)(x-lnx))/(x^(2))dx is equa...

`int(e^(x)(x-1)(x-lnx))/(x^(2))dx` is equal to

A

`e^(x)((x-lnx)/(x))+c`

B

`e^(x)((x-lnx+1)/(x))+c`

C

`e^(x)((x-lnx)/(x^(2)))+c`

D

`e^(x)((x-lnx-1)/(x))+c`

Text Solution

Verified by Experts

The correct Answer is:
D

`int(e^(x)(x-1)(x-lnx))/(x^(2))dx`
`=inte^(x)((1)/(x)-(1)/(x^(2)))(ln.(e^(x))/(x))dx`
`=intln.(e^(x))/(x)d((e^(x))/(x))`
`=ln((e^(x))/(x))(e^(x))/(x)-(e^(x))/(x)+c`
`=(e^(x))/(x)(x-ln x-1)+c`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

int(e^(tan^(-1)x))/(1+x^(2))dx :

int(x^3-x)/(1+x^6)dx is equal to

int2x.e^(x^(2))dx equal to

int(e^(tan^(-1)x))/(1+x^(2))dx

int_(1)^(2)x^(2)dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int x.2^(ln(x^(2)+1))dx is equal to

int_(1)^(2)(dx)/(x^(2)) is equal to

int(e^(x)(1+x))/(cos^(2)(e^(x)x))dx equals