Home
Class 12
PHYSICS
A unit vector parallel to the resultant ...

A unit vector parallel to the resultant of the vectors
`overset(harr)A=4overset^j + 3 overset ^j + 6 overset ^k" and" overset(harr)B=- overset ^i + 8 overset ^j-8 overset ^k`

A

`(3 overset ^i + 11 overset ^j -2 overset ^k)/(2)`

B

`( overset ^ i + 2 overset ^ j- 3 overset ^k)/(sqrt 166)`

C

`(3 overset ^ i + 11 overset ^j-2 overset ^k)/(sqrt (134))`

D

`(4 overset ^i + 6 overset ^j + 8 overset ^k)/(sqrt 11)`

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector parallel to the resultant of the vectors \( \vec{A} \) and \( \vec{B} \), we will follow these steps: ### Step 1: Write down the vectors Given: \[ \vec{A} = 4\hat{i} + 3\hat{j} + 6\hat{k} \] \[ \vec{B} = -\hat{i} + 8\hat{j} - 8\hat{k} \] ### Step 2: Find the resultant vector \( \vec{R} \) The resultant vector \( \vec{R} \) is obtained by adding \( \vec{A} \) and \( \vec{B} \): \[ \vec{R} = \vec{A} + \vec{B} = (4\hat{i} + 3\hat{j} + 6\hat{k}) + (-\hat{i} + 8\hat{j} - 8\hat{k}) \] ### Step 3: Combine like terms Combine the coefficients of \( \hat{i} \), \( \hat{j} \), and \( \hat{k} \): \[ \vec{R} = (4 - 1)\hat{i} + (3 + 8)\hat{j} + (6 - 8)\hat{k} \] \[ \vec{R} = 3\hat{i} + 11\hat{j} - 2\hat{k} \] ### Step 4: Calculate the magnitude of the resultant vector \( \vec{R} \) The magnitude \( |\vec{R}| \) is given by: \[ |\vec{R}| = \sqrt{(3)^2 + (11)^2 + (-2)^2} \] \[ |\vec{R}| = \sqrt{9 + 121 + 4} = \sqrt{134} \] ### Step 5: Find the unit vector The unit vector \( \hat{u} \) in the direction of \( \vec{R} \) is given by: \[ \hat{u} = \frac{\vec{R}}{|\vec{R}|} \] Substituting \( \vec{R} \) and \( |\vec{R}| \): \[ \hat{u} = \frac{3\hat{i} + 11\hat{j} - 2\hat{k}}{\sqrt{134}} \] ### Final Answer Thus, the unit vector parallel to the resultant of the vectors \( \vec{A} \) and \( \vec{B} \) is: \[ \hat{u} = \frac{3}{\sqrt{134}}\hat{i} + \frac{11}{\sqrt{134}}\hat{j} - \frac{2}{\sqrt{134}}\hat{k} \]

To find a unit vector parallel to the resultant of the vectors \( \vec{A} \) and \( \vec{B} \), we will follow these steps: ### Step 1: Write down the vectors Given: \[ \vec{A} = 4\hat{i} + 3\hat{j} + 6\hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • MOTION IN A PLANE

    PHYSICS WALLAH|Exercise LEVEL-2|30 Videos
  • MOTION IN A PLANE

    PHYSICS WALLAH|Exercise NEET Past 5 years Questions|10 Videos
  • MECHANICAL PROPERTIES OF MATTER

    PHYSICS WALLAH|Exercise NEET Past 5 Yeats Questions|16 Videos
  • MOTION IN A STRAIGHT LINE

    PHYSICS WALLAH|Exercise NEET Past 5 Years Questions|5 Videos

Similar Questions

Explore conceptually related problems

If the vectors overset(^)i+2overset(^)k,overset(^)j+overset(^)k and lambda overset(^)i+mu overset(^)j collinear, then

If the vectors 3overset(^)i+overset(^)j-5overset(^)k and aoverset(^)i+boverset(^)j-15overset(^)k are collinear, if

Three concurrent edges OA,OB,OC of a parallelopiped are represented by three vectors 2overset(^)i+overset(^)j-overset(^)k,overset(^)i+2overset(^)j+3overset(^)k and -3overset(^)i-overset(^)j+overset(^)k the volume of the solid so formed in cubic unit is

The three vectors 10overset(^)i+13overset(^)j+16overset(^)k,30overset(^)i+33overset(^)j+36overset(^)k and 47overset(^)i+50overset(^)j+53 overset(^)k are

If the volume of parallelopiped with coterminus edges -poverset(^)i+5k,overset(^)i-overset(^)j+qoverset(^)k and 3overset(^)i-5overset(^)j is 8 then

The area of parallelogram represented by the vectors overset(rarr)A = 2 hat i + 3 hat j and overset(rarr)B=hat i+4 hat j is

If vectors overset(^)i+overset(^)j+overset(^)k,overset(^)j-overset(^)i,overset(^)i+2overset(^)j+aoverset(^)k are coplanar, then a is equal to

If the volume of parallelopiped whose concurrent edges are 3overset(^)i-overset(^)j+4overset(^)k,2overset(^)i+lambdaoverset(^)j-overset(^)k and -5overset(^)i+2overset(^)j+lambdaoverset(^)k is 110 cu. units, then the value of lambda is

Find unit vectors along overset(rarr)A=hat I + hat j - 2 hat k and overset(rarr)B=hat I +2 hat j -hat k

If the vectors overset(to)(b), overset(to)(c ) , overset(to)(d) are not coplanar then prove than the vectors (overset(to)(a) xx overset(to)(b)) xx (overset(to)(c ) xx overset(to)(d)) + (overset(to)(a) xx overset(to)(c )) xx (overset(to)(d) xx overset(to)(b)) +(overset(to)(a) xx overset(to)(d)) xx (overset(to)(b) xx overset(to)( c)) is parallel to overset(to)(a)