Home
Class 12
PHYSICS
Which of the following functions represe...

Which of the following functions represent `SHM` :-
(i) `sin 2omegat` , (ii) `sin omegat + 2cos omegat` , (iii) `sinomegat + cos 2omegat`

Text Solution

Verified by Experts

A motion will be `S.H.M.` if acceleration `prop - y`
(i) As `y = sin 2omegat rArr v = (dy)/(dt) = 2omegacos 2 omegat`
`rArr` Acceleration `= (d^(2)y)/(dt^(2)) = -4omega^(2) sin 2omegat = - 4omega^(2)y`
so `y = sin 2omegat` represents `S.H.M.`
(ii) `y = sin omegat + 2 cos omegat rArr v = (dy)/(dt) = omegacost - 2omegasint`,
Accleration `= (dv)/(dt) = - omega^(2)sinomegat - 2omega^(2)cosomegat = - omega^(2)(sinomegat + 2cosomegat) = -omega^(2)y`
`:.` The given function represents `SHM`
(iii) `y = sin omegat + cos 2omegat rArr (dy)/(dt) = omegacosomegat - 2omegasin2omegat, (d^(2)y)/(dt^(2)) = - omega^(2)sint -4omega^(2)cos^(2)omegat = - omega^(2)(sinomegat + 4cos^(2)omegat)`
`(d^(2)y)/(dt^(2)) cancelprop (-y)` (Oscillatory nut `S.H.M.` not possible)
Promotional Banner

Topper's Solved these Questions

  • SIMPLE HARMONIC MOTION

    ALLEN |Exercise SOME WORKED OUT EXAMPLES|29 Videos
  • SIMPLE HARMONIC MOTION

    ALLEN |Exercise Exercise-01|117 Videos
  • RACE

    ALLEN |Exercise Basic Maths (Wave Motion & Dopplers Effect) (Stationary waves & doppler effect, beats)|25 Videos
  • TEST PAPER

    ALLEN |Exercise PHYSICS|4 Videos

Similar Questions

Explore conceptually related problems

Out of the following functions representing motion of a particle which represent SHM? (a) y= sin omega t- cos omega t (b) y= sin^(2) omega t (c ) y= 5cos ((3pi)/(4)-3 omega t) (d) y= 1+ omega t+ omega^(2) t^(2)

The following equations represent transverse waves : z_(1) = A cos(kx - omegat) , z_(2) = A cos (kx + omegat) , z_(3) = A cos (ky - omegat) Identify the combination (s) of the waves which will produce (i) standing wave(s), (ii) a wave travelling in the direction making an angle of 45^(@) with the positive x and positive y axes. In each case, find the positions at which the resultant is always zero.

Which of the following functions of time represent (a) simple harmonic, (b) periodic but not simple harmonic, and (c) non-periodic motion? Give period for each case of periodic motion ( omega is any positive constant): (a) sinomegat-cosomegat (b) sin^(3)omegat (c) 3cos(pi//4-2omegat) (d) cosomegat+cos3omegat+cos5omegat (e) exp(-omega^(2)t^(2)) (f) 1+omegat+omega^(2)t^(2)

Find the derivative of the following functions with respect to x sin [cos(x^(2))]

Which of the following functions of time represent (a) periodic and (b) non-periodic motion? Give the period for each case of periodic motion [ omega is any positive constant]. (i) sinomegat+cosomegat (ii) sinomegat+cos2omegat+sin4omegat (iii) e^(-omegat) (iv) log(omegat)

Find the resulting amplitude A' and the phase of the vibrations delta S = Acos(omegat) + A/2 cos (omegat + pi/2) + A/2 cos (omega t + pi) + A/8 cos (omegat + (3pi)/(2)) = A' cos (omega t + delta)

The function sin^(2) (omegat) represents.

Which of the following functions of time represent (a) simple harmonic motion and (b) periodic but not simple harmonic? Give the period for each case. (1) sinomegat-cosomegat (2) sin^(2)omegat

Find (i) int cos^(2)x,dx (ii) int sin (2x)cos (3x)dx , (iii) int sin^(3)x dx.

Integrate the following functions : e^(x)((2+sin2x)/(1+cos2x))