Home
Class 12
PHYSICS
Pendulum A is a physical pendulum made f...

Pendulum `A` is a physical pendulum made from a thin, rigid and uniform rod whose length is `d`. One end of this rod is attached to the ceiling by a frictionless hinge, so that the rod is free to swing back and forth. Pendulum `B` is a simple pendulum whose length is also `d`. Obtain the ratio `(T_(A))/(T_(B))` of their periods for small angle oscillations.

A

(a)`sqrt((3)/(2))`

B

(b)`sqrt((2)/(3))`

C

(c)`(2)/(3)`

D

(d)`3/2`

Text Solution

Verified by Experts

The correct Answer is:
B

`T_(A) = 2pisqrt((I)/(mgl)) = 2pisqrt((mgl^(2)//3)/(mgl//2)) = 2pisqrt((2l)/(3g))` & `T_(B) = 2pisqrt((l)/(g)) rArr (T_(A))/(T_(B)) = sqrt((2)/(3)`
Promotional Banner

Topper's Solved these Questions

  • SIMPLE HARMONIC MOTION

    ALLEN |Exercise SOME WORKED OUT EXAMPLES|29 Videos
  • SIMPLE HARMONIC MOTION

    ALLEN |Exercise Exercise-01|117 Videos
  • RACE

    ALLEN |Exercise Basic Maths (Wave Motion & Dopplers Effect) (Stationary waves & doppler effect, beats)|25 Videos
  • TEST PAPER

    ALLEN |Exercise PHYSICS|4 Videos

Similar Questions

Explore conceptually related problems

A rod with rectangular cross section oscillates about a horizontal axis passing through one of its ends and it behaves like a seconds pendulum, its length will be

A rod with rectangular cross section oscillates about a horizontal axis passing through one of its ends and it behaves like a seconds pendulum, its length will be

A weightless rigid rod with a load at the end is hinged at point A to the wall so that it can rotate in all directions (Fig). The rod is kept in the horizontal position by a vertical inextensible thread of length 1, fixed at its midpoint. The load receives a momentum in the direction perpendicular to the plane of the figure. Determine the period T of small oscillations of the system.

A uniform rod of length (L) and mass (M) is pivoted at the centre. Its two ends are attached to two springs of equal spring constants (k). The springs are fixed to rigid supports as shown in the figure, and the rod is free to oscillate in the horizontal plane. The rod is free to oscillate in the horizontal plane. The rod is gently pushed through a small angle (theta) in one direction and released. The frequency of oscillation is. ? (##JMA_CHMO_C10_009_Q01##).

A small ball of mass m and charge q is attached to the bottom end of a piece of negligible mass thread of length l, whose top end is fixed. The system formed by the thread and ball is in vertical plane and is in uniform horizontal magnetic field B, which is perpendicular to the plane of figure and points into the paper The ball is started with a velocity v_(0) from lower most point of circle in a direction perpendicular both to the magnetic induction and to direction of thread. The ball moves along a circular path such that thread remains tight during the whole motion. Neglect any loss of enery. By what factor is the force acting on the thread (tension in thread) at point A is greater than at point C, when speed of the ball is the above stated one?

A massless rod rigidly fixed at O. A sting carrying a mass m at one end is attached to point A on the rod so that OA = a . At another point B(OB = b) of the rod, a horizontal spring of force constant k is attached as shown. Find the period of small vertical oscillations of mass m around its euqilibrium position.

A thin homogeneous rod of mass m and length l is free to rotate in vertical plane about a horizontal axle pivoted at one end of the rod. A small ballof mass m and charge q is attached to the opposite end of this rod. The whole system is positioned in a horizontal electric field of magnitude E=(mg)/(2q) . The rod is released from, shown position from rest. What is the acceleration of the small ball at the instant of releasing the rod?

Two identical small balls each of mass m are rigidly affixed at the ends of light rigid rod of length 1.5 m and the assmebly is placed symmetrically on an elevated protrusion of width l as shown in the figure. The rod-ball assmebly is titled by a small angle theta in the vertical plane as shown in the figure and released. Estimate time-period (in seconds) of the oscillation of the rod-ball assembly assuming collisions of the rod with corners of the protrusion to be perfectly elastic and the rod does not slide on the corners. Assume theta=gl (numerically in radians), where g is the acceleration of free fall.

Figure shows a metal rod PQ resting on the smooth rails AB and positioned between the poles of a permanent magnet. The rails, the rod, and the magnetic field are in three mutual perpendicular directions. A galvanometer G connects the rails through a switch K. Length of the rod =15 cm, B =0.50 T, resistance of the closed loop containing the rod 9.0 m Omega . Assume the field to be uniform. (a) Suppose K is open and the rod is moved with a speed of 12 "cm s"^(-1) in the direction shown. Give the polarity and magnitude of the induced emf. (b) Is there an excess charge built up at the ends of the rods when K is open ? What if K is closed ? (c) With K open and the rod moving uniformly, there is no net force on the electrons in the rod PQ even though they do experience magnetic force due to the motion of the rod. Explain. (d) What is the retarding force on the rod when K is closed ? How much power is required (by an external agent) to keep the rod moving at the same speed (= 12 cm s^(-1) ) when K is closed ? How much power is required when K is open? (f)How much power is dissipated as heat in the closed circuit ? What is the source of this power ? (g) What is the induced emf in the moving rod if the magnetic field is parallel to the rails instead of being perpendicular ?

A steel wire of length 5 m and diameter 10^(-3) m is hanged vertically from a ceiling of 5.22 m height. A sphere of radius 0.1 m and mass 8tt kg is tied to the free end of the wire. When this sphere is oscillated like a simple pendulum, it touches the floor of the room in its velocity of the sphere in its lower most position. Calculate the velocity of the sphere in its lower Young's modulus for in its lower most position. Young's modulus for steel =1.994 xx 10 ^(11) Nm ^(-2).