The potential energy of a particle of mass 1 kg moving in X-Y plane is given by U=(12x+5y) joules, where x an y are in meters. If the particle is initially at rest at origin, then select incorrect alternative :-
The potential energy of a particle of mass 1 kg moving along x-axis given by U(x)=[(x^(2))/(2)-x]J . If total mechanical energy of the particle is 2J then find the maximum speed of the particle. (Assuming only conservative force acts on particle)
The potential energy of a particle oscillating along x-axis is given as U=20+(x-2)^(2) Here, U is in joules and x in meters. Total mechanical energy of the particle is 36J . (a) State whether the motion of the particle is simple harmonic or not. (b) Find the mean position. (c) Find the maximum kinetic energy of the particle.
The position x of a particle with respect to time t along the x-axis is given by x=9t^(2)-t^(3) where x is in meter and t in second. What will be the position of this particle when it achieves maximum speed along the positive x direction
The velocity (v) of a particle of mass m moving along x-axis is given by v=alphasqrt(x) , where alpha is a constant. Find work done by force acting on particle during its motion from x=0 to x=2m :-
The position (x) of a particle of mass 2 kg moving along x-axis at time t is given by x=(2t^(3)) metre. Find the work done by force acting on it in time interval t=0 to t=2 is :-
The velocity (v) of a particle of mass m moving along x-axis is given by v=alphax , where alpha is a constant. Find work done by force acting on particle during its motion from x=0 to x=2m :-
The potential energy of a 1 kg particle free to move along the x- axis is given by V(x) = ((x^(4))/(4) - x^(2)/(2)) J The total mechainical energy of the particle is 2 J . Then , the maximum speed (in m//s) is
Acceleration of a particle moving along the x-axis is defined by the law a=-4x , where a is in m//s^(2) and x is in meters. At the instant t=0 , the particle passes the origin with a velocity of 2 m//s moving in the positive x-direction. (a) Find its velocity v as function of its position coordinates. (b) find its position x as function of time t. (c) Find the maximum distance it can go away from the origin.
The potential energy (U) of a body of unit mass moving in a one-dimension force field is given by U=(x^(2)-4x+3) . All units are in S.L