Home
Class 12
PHYSICS
A 100g block is connected to a horizonta...

A `100g` block is connected to a horizontal massless spring of force constant `25.6 N//m`. The block is free to oscillate on a horizontal fricationless surface. The block is displced by `3 cm` from the equilibrium position, and at `t = 0`, it si released from rest at `x = 0`, The position-time graph of motion of the block is shown in figure.

When the block is at position `A` on the graph, its

A

(a)position and velocity both are negative

B

(b)position and velocity both are positive.

C

(c)position is negative and velocity is positive.

D

(d)position is positive and velocity is negative.

Text Solution

Verified by Experts

The correct Answer is:
C

At position A, x is negative and `(dx)/(dt) ` is negative.
Promotional Banner

Topper's Solved these Questions

  • SIMPLE HARMONIC MOTION

    ALLEN |Exercise SOME WORKED OUT EXAMPLES|29 Videos
  • SIMPLE HARMONIC MOTION

    ALLEN |Exercise Exercise-01|117 Videos
  • RACE

    ALLEN |Exercise Basic Maths (Wave Motion & Dopplers Effect) (Stationary waves & doppler effect, beats)|25 Videos
  • TEST PAPER

    ALLEN |Exercise PHYSICS|4 Videos

Similar Questions

Explore conceptually related problems

A 100g block is connected to a horizontal massless spring of force constant 25.6 N//m . The block is free to oscillate on a horizontal fricationless surface. The block is displced by 3 cm from the equilibrium position, and at t = 0 , it si released from rest at x = 0 , The position-time graph of motion of the block is shown in figure. Let us now make a slight change to the initial conditions. At t = 0 , let the block be released from the same position with an initial velocity v_(1) = 64 cm//s . Position of the block as a function of time can be expressed as

A 100 g block is connected to a horizontal massless spring of force constant 25.6(N)/(m) As shown in Fig. the block is free to oscillate on a horizontal frictionless surface. The block is displaced 3 cm from the equilibrium position and , at t=0 , it is released from rest at x=0 It executes simple harmonic motion with the postive x-direction indecated in Fig. The position time (x-t) graph of motion of the block is as shown in Fig. Q. When the block is at position B on the graph its.

Figure shows a system consisting of a massless pulley, a spring of force constant k and a block of mass m. If the block is slightly displaced vertically down from is equilibrium position and then released, the period of its vertical oscillation is

A block whose mass is 1 kg is fastened to a spring. The spring has a spring constant of 50 N m^(-1) . The block is pulled to a distance x = 10 cm from its equilibrium position at x = 0 on a frictionless surface from rest at t = 0. Calculate the kinetic, potential and total energies of the block when it is 5 cm away from the mean position.

A mass 2kg is attached to the spring of spring constant 50 Nm^(-1) . The block is pulled to a distance of 5 cm from its equilibrium position at x= 0 on a horizontal frictionless surface from rest at t=0. Write the expression for its displacement at anytime t.

Two identical springs of spring constant k are attached to a block of mass m and to fixed supports as shown in figure. When the mass is displaced from equilibrium position by a distance x towards right, find the restoring force.

A block of mass 2 kg is connected with a spring of natural length 40 cm of force constant K=200 N//m . The cofficient of friction is mu=0.5 . When released from the given position, acceleration of block will be

Spring of spring constant 1200 Nm^(-1) is mounted on a smooth fricationless surface and attached to a block of mass 3 kg . Block is pulled 2 cm to the right and released. The angular frequency of oscillation is

A block whose mass is 1kg is fastened to a spring. The spring has a spring constant of 50 Nm^(-1) . The block is pulled to a distance x=10 cm from its equilibrium position at x=0 on a frictionless surface from rest at t=0. Calculate the kinetic, potential and total energies of the block when it is 5 cm away from the mean position.

A block whose mass is 2kg is fastened to a spring. The spring has a spring constant of 100 Nm^(-1) . The block is pulled to a distance x=10 cm from its equilibrium position at x=0 on a frictionless surface from rest at t=0. Calculate the kinetic, potential and total energies of the block when it is 5 cm away from the mean position.