Home
Class 7
MATHS
(a+b)(sqrt(a) + sqrt(b))(sqrt(a)- sqrt(b...

`(a+b)(sqrt(a) + sqrt(b))(sqrt(a)- sqrt(b))` = ______

A

`(a+b)^(2)`

B

`a^(2) - b^(2)`

C

1

D

`(a-b)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((a+b)(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})\), we can follow these steps: ### Step 1: Identify the Expression We start with the expression: \[ (a+b)(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) \] ### Step 2: Recognize the Identity Notice that \((\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})\) is a difference of squares. We can use the identity: \[ (x + y)(x - y) = x^2 - y^2 \] Here, let \(x = \sqrt{a}\) and \(y = \sqrt{b}\). ### Step 3: Apply the Identity Using the identity, we can simplify: \[ (\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = (\sqrt{a})^2 - (\sqrt{b})^2 = a - b \] ### Step 4: Substitute Back Now substitute back into the original expression: \[ (a+b)(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = (a+b)(a-b) \] ### Step 5: Expand the Expression Now, we expand \((a+b)(a-b)\) using the distributive property: \[ (a+b)(a-b) = a^2 - ab + ba - b^2 = a^2 - b^2 \] ### Final Result Thus, the final simplified expression is: \[ \boxed{a^2 - b^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPRESSIONS AND SPECIAL PRODUCTS

    PEARSON IIT JEE FOUNDATION|Exercise TEST YOUR CONCEPTS (SHORT ANSWER TYPE QUESTIONS) |36 Videos
  • EXPRESSIONS AND SPECIAL PRODUCTS

    PEARSON IIT JEE FOUNDATION|Exercise TEST YOUR CONCEPTS (ESSAY TYPE QUESIONS) |13 Videos
  • EXPRESSIONS AND SPECIAL PRODUCTS

    PEARSON IIT JEE FOUNDATION|Exercise EXAMPLE 2.1|25 Videos
  • EQUATIONS AND THEIR APPLICATIONS

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|23 Videos
  • FORMULAE

    PEARSON IIT JEE FOUNDATION|Exercise TEST 2|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate : ( sqrt(a) + sqrt(b) ) ( sqrt(a) - sqrt(b) )

If a and b are positive natural numbers (sqrt(a)+sqrt(b))(sqrt(a)-sqrt(b))=a-b

(sqrt(a+x)+sqrt(a-x))/(sqrt(a+x)-sqrt(a-x))=b

(a+c sqrt(b))(2+y sqrt(b))

If a = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) and b = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) then value of sqrt(3a^2 - 5ab + 3b^2) is

If a,b,c are in A.P then (1)/(sqrt(b)-sqrt(c)),(1)/(sqrt(c)-sqrt(a)),(1)/(sqrt(a)-sqrt(b)) are in

The conjugate surd of sqrt(a)+b is sqrt(a)-b b- "sqrt(a) sqrt(a)+sqrt(b) sqrt(a)-sqrt(b)