Home
Class 8
MATHS
A man can row 8 km in 1 h in still water...

A man can row 8 km in 1 h in still water . If the speed of the water current is 2 kmpj and it takes 3 h for him to go from a point P to Q and return to P . then find the distance PQ

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the distance between points P and Q (denoted as PQ). We know the following: 1. The man's rowing speed in still water = 8 km/h 2. The speed of the water current = 2 km/h 3. The total time taken for the round trip from P to Q and back to P = 3 hours ### Step 1: Calculate the effective speeds When rowing downstream (from P to Q), the effective speed of the man will be the sum of his rowing speed and the current speed: - Downstream speed = Speed in still water + Speed of current - Downstream speed = 8 km/h + 2 km/h = 10 km/h When rowing upstream (from Q to P), the effective speed will be the difference between his rowing speed and the current speed: - Upstream speed = Speed in still water - Speed of current - Upstream speed = 8 km/h - 2 km/h = 6 km/h ### Step 2: Let the distance PQ be 'd' km We can express the time taken to travel downstream and upstream in terms of 'd': - Time taken to go from P to Q (downstream) = Distance / Speed = d / 10 hours - Time taken to return from Q to P (upstream) = Distance / Speed = d / 6 hours ### Step 3: Set up the equation for total time The total time for the round trip is given as 3 hours. Therefore, we can set up the equation: \[ \frac{d}{10} + \frac{d}{6} = 3 \] ### Step 4: Solve the equation To solve this equation, we need to find a common denominator. The least common multiple of 10 and 6 is 30. We can rewrite the equation: \[ \frac{3d}{30} + \frac{5d}{30} = 3 \] Combining the fractions gives: \[ \frac{8d}{30} = 3 \] Now, multiply both sides by 30 to eliminate the fraction: \[ 8d = 90 \] Now, divide both sides by 8: \[ d = \frac{90}{8} = 11.25 \text{ km} \] ### Conclusion The distance PQ is 11.25 km.
Promotional Banner

Topper's Solved these Questions

  • TIME AND DISTANCE

    PEARSON IIT JEE FOUNDATION|Exercise Test Your Concepts (Very Short Answer Type Questions)|30 Videos
  • TIME AND DISTANCE

    PEARSON IIT JEE FOUNDATION|Exercise Test Your Concepts ( Short Answer Type Questions)|15 Videos
  • STATISTICS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL II) |29 Videos
  • TIME AND WORK PIPES AND CISTERNS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL-3)|7 Videos

Similar Questions

Explore conceptually related problems

A man can row 6km/h in still water. If the speed of the current is 2km/h,it takes 3 h more in upstream than in the downstream for the same distance. The distance is

A man can row 6 km/h in still water. If the speed of the current is 2 km/h, it takes 3 hours more in upstream than in the downstream for the same distance. The distance is

A man can row 5 km/h in still water. If the rate of current is 1 km/h, it takes 5/4 hours to row to a place and back. How far is the place?

A man can row 8 km/hr in still water. If the speed of the current is 4 km/hr, he takes 8 hours more in upstream than in the downstream. What is the distance (in km)?