Home
Class 12
MATHS
If (log)a3=2a n dlog b 8=3, then prove t...

If `(log)_a3=2a n dlog` b 8=3, then prove that `(log)_a b=(log)_3 4.`

Text Solution

Verified by Experts

If ` log_(a) 3 = 2`
` rArr 3 = a^(2)`
` rArr a = sqrt3`
If ` log_(b) 8 = 3`
` rArr 8 = b^(3)`
` rArr b = 2`
So, ` log_(a) b = log_(sqrt3) 2 = x(let)`
` rArr 2 = (sqrt3)^(x)`
` rArr 4 = 3^(x)`
` rArr x = log_(3) 4`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.14|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.15|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.12|1 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If (log)_a3=2 and (log)_b8=3 , then prove that (log)_a b=(log)_3 4.

If a = log_(12)m and b = log_(18)m , then prove that log_(3)2= (a-2b)/(b-2a) .

If log(a+b+c) = log a + log b + log c , then prove that log ((2a)/(1-a^(2))+(2b)/(1-b^(2))+(2c)/(1-c^(2))) = log(2a)/(1-a^(2)) + log (2b)/(1-b^(2)) + log(2c)/(1-c^(2)) .

Prove that 1/3<(log)_(10)3<1/2dot

If a > 0, c > 0, b = sqrt(ac), ac != 1 and N > 0 , then prove that (log_(a)N)/(log_(c )N) = (log_(a)N - log_(b)N)/(log_(b)N - log_(c )N) .

If a^2+b^2 =7ab, then prove that "log"((a+b)/3)=1/2("log"a+"log"b)

If (log)_4 5=aa n d(log)_5 6=b , then (log)_3 2 is equal to 1/(2a+1) (b) 1/(2b+1) (c) 2a b+1 (d) 1/(2a b-1)

If (log)_a b=2,(log)_b c=2,a n d(log)_3c=3+(log)_3a , then the value of c//(a b) is............

If (log)_(10)5=aa n d(log)_(10)3=b ,t h e n (A) (log)_(30)8=(3(1-a))/(b+1) (B) (log)_(40)15=(a+b)/(3-2a) (C) (log)_(243)32=(1-a)/b (d) none of these

If n >1 ,then prove that 1/((log)_2n)+1/((log)_3n)+.......+1/((log)_(53)n)=1/((log)_(53 !)n)dot