Home
Class 12
MATHS
lim(x to 1) (1-x)tan((pix)/2)...

`lim_(x to 1) (1-x)tan((pix)/2)`

Text Solution

Verified by Experts

The correct Answer is:
`2//pi`

`underset(xto1)lim(1-x)"tan"(pix)/(2)=underset(xto1)lim((1-x))/(tan((pi)/(2)-(pix)/(2)))`
`=(2)/(pi)underset(xto1)lim((2)/(pi)(1-x))/(tan((pi)/(2)(1-x)))`
`=(2)/(pi)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.6|9 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.7|7 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.4|5 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim _(xto1) (1-x) tan ""(pix)/(2) is-

Show that lim_(xrarr1)(1-x)tan((pix)/2)=2/pi

The value of lim_(x->1)(2-x)^(tan((pix)/2)) is (a) e^(-2/pi) (b) e^(1/pi) (c) e^(2/pi) (d) e^(-1/pi)

lim_(xtooo) (1)/(x+1)tan((pix+1)/(2x+2)) is equal to

lim_(x to 1)((1+x)/(2+x))^(1/2)

Evaluate the following limits : lim_(xrarr1)(1-x)tan frac(pix)2

Evaluate: lim_(xto(1)/(2))(sin((pix)/(2))-cos((pix)/(2)))/((1)/(2)-x)

Evaluate : lim_(x to 0) {tan(pi/4+x)}^(1/x)

lim_(x to 0) tan^-1x/x

If lim_(x to 0)(1+x)^(1/x)=e, prove that lim_(x to 0)(1+3x)^(((x+2))/(x))=e^(6).