Home
Class 12
MATHS
Let g(x) =int0^x f(t) dt where f is such...

Let `g(x) =int_0^x f(t) dt` where f is such that `1//2lef(t)le1` for `tin[0, 1]` and `0 lef(t) le1//2` for `tin[1, 2]
Then the interval in which g(2) lies.

Text Solution

Verified by Experts

`g(x)=int_(0)^(x)f(t)dt`
`:.g(2)=int_(0)^(2)f(t)dt=int_(0)^(1)f(t)dt+int_(1)^(2)f(t)dt`
Now `1/2lef(t)le1` for `tepsilon[0,1]`
`impliesint_(0)^(1)1/2dtleint_(0)^(1)f(t)dtleint_(0)^(1)1 dt`
`implies 1/2 le int_(0)^(1)f(t)dtle1`……………….1
Also `0lef(t)le1/2` for `tepsilon[1,2]`
`implies int_(1)^(2)0dt le int_(1)^(2)f(t)le int_(1)^(2)1/2dt`
`implies 0 le int_(1)^(2) f(t) dt le 1/2`...............2
Adding 1 and 2 we get.
`1/2 le int_(0)^(1)f(t)+int_(1)^(2)f(t)dtle3/2`
`implies1/2le int_(0)^(2)f(t)dtle3/2`
`implies1/2 le g(2)le3/2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let g(x)=int_0^x f(t).dt ,where f is such that 1/2<=f(t)<=1 for t in [0,1] and 0<=f(t)<=1/2 for t in [1,2] .Then g(2) satisfies the inequality

Let g(x) = int_(x)^(2x) f(t) dt where x gt 0 and f be continuous function and 2* f(2x)=f(x) , then

Let f(x)=int_0^xe^t(t-1)(t-2)dt , Then f decreases in the interval

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f''(x)gt0 and f'(1)=0 such that g(x)=f(cot^2x+2cotx+2) , where 0ltxltpi then the interval in which g(x) is decreasing is :

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

If f(x)=x+int_0^1 t(x+t) f(t)dt, then find the value of the definite integral int_0^1 f(x)dx.

f(x)=int_1^xlogt/(1+t+t^2)dt (xge1) then prove that f(x) =f(1/x)

If f(x)=int_(x^(2))^(x^(2)+1)e^(-t^(2))dt , then the interval in which f(x) is increasing, is-

CENGAGE PUBLICATION-DEFINITE INTEGRATION -JEE ADVANCED
  1. Let g(x) =int0^x f(t) dt where f is such that 1//2lef(t)le1 for tin[0,...

    Text Solution

    |

  2. Let f be a non-negative function defined on the interval [0,1]. If int...

    Text Solution

    |

  3. The value of int0^1(x^4(1-x)^4)/(1+x^2)dxi s//a r e (22)/7-pi (b) 2/...

    Text Solution

    |

  4. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  5. The value of int(in2)^sqrt(in3) (xsinx^2)/(sinx^2+sin(In6-x^2)dx is

    Text Solution

    |

  6. Let f:[-1,2]vec[0,oo) be a continuous function such that f(x)=f(1-x)fo...

    Text Solution

    |

  7. Let f:[1/2,1]->R (the set of all real numbers) be a positive, non-cons...

    Text Solution

    |

  8. Let f : [0,2] rarr R be a function which is continuous on [0 , 2] and ...

    Text Solution

    |

  9. int((pi)/4)^((pi)/2)(2cosecx)^17 dx

    Text Solution

    |

  10. Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. I...

    Text Solution

    |

  11. The value of int(-pi/2)^(pi/2) (x^2cosx)/(1+e^x) dx is equal to

    Text Solution

    |

  12. If In=int(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... t...

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. Let S be the area of the region enclosed by y=e^(-x^(2)),y=0, x=0 and ...

    Text Solution

    |

  15. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  16. Let f:[a,b]rarr[1,infty) be a continuous function and lt g: RrarrR be ...

    Text Solution

    |

  17. Let f:(0,oo)rarrRR be given by f(x)=oversetxunderset(1/x)inte^((t+1/...

    Text Solution

    |

  18. The option(s) with the values of a and L that satisfy the following eq...

    Text Solution

    |

  19. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2, pi/2). T...

    Text Solution

    |

  20. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  21. Let f: Rto(0,1) be a continuous function. Then, which of the following...

    Text Solution

    |