Home
Class 12
MATHS
If In=int0^1(dx)/((1+x^2)^n); n in N , ...

If `I_n=int_0^1(dx)/((1+x^2)^n); n in N ,` then prove that `2nI_(n+1)=2^(-n)+(2n-1)I_n`

Text Solution

Verified by Experts

`I_(n)=int_(0)^(1)(dx)/((1+x^(2))^(n))`
`=|1/((1+x^(2))^(n)) . X |_(0)^(1)-int_(0)^(1)n(1+x^(2))^(-n-1)2x.xdx`
`=1/(2^(n))+n int_(0)^(1) (2x^(2))/((1+x^(2))^(n+1))dx`
`=1/(2^(n))+2n int_(0)^(1)(dx)/((1+x^(2))^(n))-2n int_(0)^(1)(dx)/((1+x^(2))^(n+1))`
`=1/(2^(n))+2nI_(n)-2nI_(n+1)`
or `(2n-1)I_(n)+1/(2^(n))=2nI_(n+1)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Prove that [(n+1)//2]^n >(n !)dot

int dx/(x^n(1+x^n)^(1/n)) is

If I_n = int tan^n x dx , then prove that I_n = (tan^(n-1) x)/(n - 1) - I_(n - 2) . Hence find int tan^7 x dx

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

Prove that .^(2n)P_(n)={1.3.5.....(2n-1)}.2n

If I_(n)=int_(0)^(pi/2) sin^(n)x dx , then show that I_(n)=((n-1)n)I_(n-2) . Hence prove that I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}

For n in N , Prove that (n+1)[n!n+(n-1)!(2n-1)+(n-2)!(n-1)]=(n+2)!

IfI_n=int_0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)I_n+(n-1)I_(n-2)=-1/n+pi/2

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_(m-2,n)(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4 when both m and n are even ((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))}

Prove that (2n!)/(n!)={1.3.5.....(2n-1)}2^n

CENGAGE PUBLICATION-DEFINITE INTEGRATION -JEE ADVANCED
  1. If In=int0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI(n+1)=2^(-n...

    Text Solution

    |

  2. Let f be a non-negative function defined on the interval [0,1]. If int...

    Text Solution

    |

  3. The value of int0^1(x^4(1-x)^4)/(1+x^2)dxi s//a r e (22)/7-pi (b) 2/...

    Text Solution

    |

  4. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  5. The value of int(in2)^sqrt(in3) (xsinx^2)/(sinx^2+sin(In6-x^2)dx is

    Text Solution

    |

  6. Let f:[-1,2]vec[0,oo) be a continuous function such that f(x)=f(1-x)fo...

    Text Solution

    |

  7. Let f:[1/2,1]->R (the set of all real numbers) be a positive, non-cons...

    Text Solution

    |

  8. Let f : [0,2] rarr R be a function which is continuous on [0 , 2] and ...

    Text Solution

    |

  9. int((pi)/4)^((pi)/2)(2cosecx)^17 dx

    Text Solution

    |

  10. Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. I...

    Text Solution

    |

  11. The value of int(-pi/2)^(pi/2) (x^2cosx)/(1+e^x) dx is equal to

    Text Solution

    |

  12. If In=int(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... t...

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. Let S be the area of the region enclosed by y=e^(-x^(2)),y=0, x=0 and ...

    Text Solution

    |

  15. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  16. Let f:[a,b]rarr[1,infty) be a continuous function and lt g: RrarrR be ...

    Text Solution

    |

  17. Let f:(0,oo)rarrRR be given by f(x)=oversetxunderset(1/x)inte^((t+1/...

    Text Solution

    |

  18. The option(s) with the values of a and L that satisfy the following eq...

    Text Solution

    |

  19. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2, pi/2). T...

    Text Solution

    |

  20. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  21. Let f: Rto(0,1) be a continuous function. Then, which of the following...

    Text Solution

    |