Home
Class 12
MATHS
Evaluating integrals dependent on a para...

Evaluating integrals dependent on a parameter:
Differentiate I with respect to the parameter within the sign an integrals taking variable of the integrand as constant. Now evaluate the integral so obtained as a function of the parameter then integrate then result of get I. Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of I.
The value`int_(0)^(pi//2)log(sin^(2)theta+k^(2)cos^(2)theta)d theta`, where `kge0,` is

A

`pi log (1+k)+pilog2`

B

`pilog(1+k)`

C

`pi log (1+k)-pi log 2`

D

`log (1+k)-log 2`

Text Solution

Verified by Experts

The correct Answer is:
C

Let `F(k)=int_(0)^(pi//2) In (sin^(2)theta+k^(2)cos^(2)theta) d theta`
`F'(k)=int_(0)^(pi//2)1/(sin^(2)theta+k^(2)cos^(2)theta) 2kcos^(2) theta d theta`
`=2kint_(0)^(pi//2) (cos^(2)theta)/(sin^(2) theta+k^(2)cos^(2)theta) d theta`
`=2k int_(0)^(pi//2) (d theta)/(tan^(2) theta +k^(2))`
`=2k int_(0)^(pi//2) (sec^(2)theta-tan^(2)theta)/(tan^(2) theta+k^(2)) d theta`
`=2kint_(0)^(oo) (dt)/(t^(2)+k^(2))-2kint_(0)^(pi//2) d theta +2k^(3) int_(0)^(pi//2) (d theta)/(tan^(2) theta +k^(2))`
`=2k 1/k "tan"^(-1) t/k|_(0)^(oo) -2k (pi)/2 +k^(2)F'(k)`
or `(1-k^(2))F'(k)=pi-kpi=pi(1-k)`
or `F'(k)=(pi)/(1+k)`
or `F(k)=pi log (1+k)+c`
For `k=1, F(1)=0` or `c=-pilog2`
or `F(k)=pilog(1+k)-pilog2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MCQ_TYPE|27 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluating integrals dependent on a parameter: Differentiate I with respect to the parameter within the sign an integrals taking variable of the integrand as constant. Now evaluate the integral so obtained as a function of the parameter then integrate then result of get I. Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of I. If int_(0)^(pi)(dx)/((a-cosx))=(pi)/(sqrt(a^(2)-1)) , then the value of int_(0)^(pi)(dx)/((sqrt(10)-cosx)^3) is

Evaluate: int_(-pi/2)^(pi/2)log((a-sin theta)/(a+sin theta)) d theta,a >0

Evaluate: int_(-pi/2)^(pi/2)log((a-sin theta)/(a+sin theta)) d theta,a >0

Find the value of the integral is int_(0)^(pi) x log sinx dx

The value of the integral int((1-costheta)^(2/7))/((1+costheta)^(9/7))d theta is

The value of the integral int_(0)^(2)|x^(2)-1|dx is

The value of the integral int_(1)^(e ) (log x)^(2)dx is -

By using the properties of definite integrals, evaluate the integrals int_(0)^(2pi)cosxdx

Evaluate the following integrals : int cos^(2) theta d theta

Evaluate the following integrals : int cot^(2) theta d theta

CENGAGE PUBLICATION-DEFINITE INTEGRATION -LC_TYPE
  1. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  2. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  3. The value of int(0)^(1)(x^(a)-1)/(logx)dx is

    Text Solution

    |

  4. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  5. The value of (dI)/(da) when I=int(0)^(pi//2) log((1+asinx)/(1-asinx)) ...

    Text Solution

    |

  6. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  7. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  8. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  9. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  10. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then...

    Text Solution

    |

  11. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then...

    Text Solution

    |

  12. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  13. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  14. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  15. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  16. If Un=int0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zer...

    Text Solution

    |

  17. If Un=int0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zer...

    Text Solution

    |

  18. Assertion : Millikan's experiment established that electric charge is ...

    Text Solution

    |

  19. If p1 and p2 are the lengths of the perpendiculars from the point (2,3...

    Text Solution

    |

  20. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |