Home
Class 12
MATHS
If Un=int0^pi(1-cosnx)/(1-cosx)dx , wher...

If `U_n=int_0^pi(1-cosnx)/(1-cosx)dx ,` where `n` is positive integer or zero, then show that `U_(n+2)+U_n=2U_(n+1)dot` Hence, deduce that `int_0^(pi/2)(sin^2ntheta)/(sin^2theta)=1/2npidot`

A

`pi//2`

B

`pi`

C

`npi//2`

D

`npi`

Text Solution

Verified by Experts

The correct Answer is:
D

`U_(n+2)-U_(n+1)=int_(0)^(pi)((1-cos(n+2)x)-(1-cos(n+1)x))/(1-cosx)dx`
`=int_(0)^(pi)(cos(n+1)x-cos(n+2)x)/(1-cosx)`
`=int_(0)^(x)(2sin(n+3/2)x . "sin"x/2)/(2sin^(2)x//2) dx`
`implies U_(n+2)-U_(n+1)=int_(0)^(pi)("sin"(n+3/2)x)/("sin"x/2)dx`.................1
`impliesU_(n+1)-U_(n)=int_(0)^(pi)("sin"(n+1/2)x)/("sin"x/2)dx`.............2
From 1 and 2 we get
`(U_(n+2)-U_(n-1))-(U_(n+1)-U_(n))`
`=int_(0)^(pi)(sin(n+3/2)x-sin(n+1/2)x)/("sin"x/2)dx`
`implies U_(n+2)+U_(n)-2U_(n+1)`
`=int(2cos(n+1)x.sinx//2)/(sinx//2) dx`
`=2int_(0)^(pi)cos(n+1)x dx`
`=2((sin(n+1)x)/(n+1))-(0)^(pi)=0`
`impliesU_(n+2)+U_(n)=2U_(n+1)`
`implies U_(n),U_(n+1),U_(n+2)` are in A.P.
`U_(0)=int_(0)^(pi)(1-1)/(1-cosx)dx=0`
`U_(1)=int_(0)^(pi)(1-cosx)/(1-cosx) dx=pi`
`U_(1)=U_(0)=pi` (common difference)
`:.U_(n)=U_(0)+npi=npi`
Now, `I_(n)=int_(0)^(pi//2) (sin^(2) n theta)/(sin^(2) theta) d theta`
`=int_(0)^(pi//2) (sin^(2) n theta)/(sin^(2)theta) d theta`
`=int_(0)^(pi//2) (1-cos2 n theta)/(1-cos 2theta) d theta=1/2 int_(0)^(pi)(1-cosn x)/(1-cosx) dx`
`impliesI_(n)=1/2npi`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MCQ_TYPE|27 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_0^(pi/2)(cosx)/(1+sinx)^2dx

Prove that: int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx = pi^2

Evaluate: int_0^(pi/2)(sinx+cosx)^2/(1+sin2x)^(1/2)dx

Show that int_0^(npi+v)|sinx|dx=2n+1-cosv , where n is a positive integer and , 0<=vltpi

Q. int_0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

Show that, int_(0)^(n pi+v)|sin x|dx=2n+1-cosv , where n is a positive integer and 0 le v le pi .

Determine a positive integer n such that int_0^(pi/2)x^nsinx dx=3/4(pi^2-8)

Prove that, int_(0)^(2pi)(xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx=pi^(2) .

If I_(n)=int_(0)^((pi)/(4))tan^(n)thetad theta , for any positive integer n, then the value of n(I_(n-1)+I_(n+1)) is -

P(n):11^(n+2)+1^(2n+1) where n is a positive integer p(n) is divisible by -

CENGAGE PUBLICATION-DEFINITE INTEGRATION -LC_TYPE
  1. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  2. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  3. The value of int(0)^(1)(x^(a)-1)/(logx)dx is

    Text Solution

    |

  4. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  5. The value of (dI)/(da) when I=int(0)^(pi//2) log((1+asinx)/(1-asinx)) ...

    Text Solution

    |

  6. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  7. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  8. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  9. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  10. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then...

    Text Solution

    |

  11. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then...

    Text Solution

    |

  12. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  13. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  14. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  15. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  16. If Un=int0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zer...

    Text Solution

    |

  17. If Un=int0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zer...

    Text Solution

    |

  18. Assertion : Millikan's experiment established that electric charge is ...

    Text Solution

    |

  19. If p1 and p2 are the lengths of the perpendiculars from the point (2,3...

    Text Solution

    |

  20. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |