Home
Class 12
MATHS
The value of int0^1 (8log(1+x))/(1+x^2) ...

The value of `int_0^1 (8log(1+x))/(1+x^2) dx` is

A

`log 2`

B

`pi log 2`

C

`(pi)/8 log 2`

D

`(pi)/2 log 2`

Text Solution

Verified by Experts

The correct Answer is:
B

We have
`I=int_(0)^(1)(8log(1+x))/(1+x^(2))dx`
Put `x=tan theta`
`impliesI=int_(0)^((pi)/4) 8 . (log (1+tan theta))/(sec^(2) theta) sec^(2) theta d theta`
`=8 int_(0)^(pi//4) log (1+tan theta) d theta`
`=8 int_(0)^(pi//4) log (1+tan (pi//4-theta) d theta`
`=8int_(0)^(pi//4) log(1+(1-tan theta)/(1+tan theta)) d theta`
`=8int_(0)^(pi//4) log (2/(1+ tan theta)) d theta`
`=8(log2). (pi)/4-I`
`implies2I=2pi log 2`
`implies I=pi log 2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1) (log(1+x)dx)/(1+x^(2)) is -

The value of int_0^oo (dx)/(1+x^4) is

The value of int_(0)^(1)(dx)/(x^(2)+1) is-

Find the value of int_0^1x(1-x)dx

STATEMENT 1 : The value of int_0^1tan^(-1)((2x-1)/(1+x-x^2)) dx=0 STATEMENT 2 : int_a^bf(x)dx=int_0^bf(a+b-x)dx then Which of the following statement is correct ?

The value of int_(-2)^(2)[p log((1+x)/(1-x))+q log ((1-x)/(1+x))^(-2)+r]dx depends on -

Evaluate : int(log_e(x+1))/((x+1)^2) dx

The value of int_((1)/(e ))^(e )|log x|dx is equal to -

The value of int_(0)^(1) tan^(-1)((1)/(x^(2)-x+1))dx is equal to -

int_(0)^(1)log((1-x)/(x))dx=0