Home
Class 12
MATHS
For x epsilon(0,(5pi)/2), definite f(x)...

For `x epsilon(0,(5pi)/2)`, definite `f(x)=int_(0)^(x)sqrt(t) sin t dt`. Then `f` has

A

local maximum at `pi` and local minima at `2pi`

B

local maximum at `pi` and `2pi`

C

local minimum at `pi` and `2pi`

D

local minimum at `pi` and local maximum at `2pi

Text Solution

Verified by Experts

The correct Answer is:
A

We have
`f(x)=int_(0)^(x)sqrt(t)sin t dt`
`impliesf'(x)=sqrt(x)sinx`
For maximum of minimum value of `f(x), f'(x)=0`
`impliesx=2npi,n epsilonZ`
Sign scheme of `f'(x)` for `xepsilon(0,(5pi)/2)` is

`f'(x)` changes its sign from +ve to -ve in the neighborhood of `pi` and from -to + in the neighborhood of `2pi`.
Hence `f(x)` has local maximum at `x=pi` and local minima at `x=2pi`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_0^x(sint)/t dt ,x >0, then

The function f(x) =int_0^xsqrt(1-t^4) dt is such that

Let F(x)=int_(0)^(x)(cost)/((1+t^(2)))dt,0lex le2pi . Then -

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f(x)=int_(-1)^(x)|t|dt , then for any xge0,f(x) equals

Let f:RtoR be a continuous function which satisfies f(x)=int_(0)^(x)f(t)dt . Then the value of f(log_(e)5) is

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

Let f(x) = int_2^x f(t^2-3t+2) dt then

The points of extrema of the function f(x)= int_(0)^(x)(sin t)/(t)dt in the domain x gt 0 are-

If f' is a differentiable function satisfying f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2 then the value of f(pi) is equal to (a) −sqrt[3]/2 (b) -1/2 (c) sqrt[3]/2 (d) 1/2