Home
Class 12
MATHS
If g(x)=int0^xcos^4tdt , then g(x+pi) eq...

If `g(x)=int_0^xcos^4tdt ,` then `g(x+pi)` equals `g(x)+g(pi)` (b) `g(x)-g(pi)` `g(x)g(pi)` (d) `(g(x))/(g(pi))`

A

`(g(x))/(g(pi))`

B

`g(x)+g(pi)`

C

`g(x)-g(pi)`

D

`g(x).g(pi)`

Text Solution

Verified by Experts

The correct Answer is:
B

`g(x+pi)=int_(0)^(x+pi)cos^(4)tdt`
`=int_(0)^(pi)cos^(4)tdt+int_(x)^(x+pi)cos^(4)t dt ( :' cos^(4) t"has period" pi)`
`=g(x)+int_(0)^(pi)cos^(4)tdt`
`=g(x)+g(pi)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If g(x)= int_0^x cos^4t dt , then g(x + pi) equals

If g(x)=int_(0)^(x)cos4tdt , then g(x+pi) equals-

If g(x)=int_0^xcos^4tdt , then g(x+pi) equals (a) g(x)+g(pi) (b) g(x)-g(pi) (c) g(x)g(pi) (d) (g(x))/(g(pi))

If g(x)=int_(0)^(x)cos^(4)t dt , then prove that g(x+pi)=g(x)+g(pi) .

If g(x)=int_0^x(|sint|+|cost|)dt ,then g(x+(pin)/2) is equal to, where n in N , (a) g(x)+g(pi) (b) g(x)+g((npi)/(2)) (c) g(x)+g(pi/2) (d) none of these

If g(x)=int_(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(pi/2)=-2pi (b) g^(prime)(-pi/2)=-2pi (c) g^(prime)(-pi/2)=2pi (d) g^(prime)(pi/2)=2pi

If g(x)=int_0^x2|t|dt ,then (a) g(x)=x|x| (b) g(x) is monotonic (c) g(x) is differentiable at x=0 (d) gprime(x) is differentiable at x=0

int [f(x)g"(x) - f"(x)g(x)]dx is

Suppose f and g are functions having second derivative f'' and g' ' everywhere. If f(x)dotg(x)=1 for all x and f^(prime) and g' are never zero, then (f^('')(x))/(f^(prime)(x))-(g^('')(x))/(g^(prime)(x)) is equal (a) (-2f^(prime)(x))/f (b) (-2g^(prime)(x))/(g(x)) (c) (-f^(prime)(x))/(f(x)) (d) (2f^(prime)(x))/(f(x))

If a r g(z)<0, then a r g(-z)-"arg"(z) equals pi (b) -pi (d) -pi/2 (d) pi/2