Home
Class 12
MATHS
The integral int0^pi sqrt(1 + 4 sin^2(x/...

The integral `int_0^pi sqrt(1 + 4 sin^2(x/2) - 4 sin (x/2)) dx` equals :

A

`pi-4`

B

`(2pi)/3-4-sqrt(3)`

C

`4sqrt(3)-4`

D

`4sqrt(3)-4-(pi)/3`

Text Solution

Verified by Experts

The correct Answer is:
D

`I=int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx`
`=int_(0)^(x)|1-2"sin"x/2|dx`
`=int_(0)^(pi//3)|1-2"sin"x/2|dx`
`=int_(0)^(pi//3) (1-2"sin"x/2)dx+int_(pi//3)^(pi)(2"sin"x/2-1)dx`
`=(x+4"cos"x/2)|._(0)^(pi//3)+(-4"cos"x/2-x)|_(pi//3)^(pi)`
`=4sqrt(3)-4-(pi)/3`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The integral int_(0)^(x)sqrt(1+4sin^(2)""(x)/(2)-4sin""(x)/(2))dx equals-

The value of the integral int_0^(pi/4) (sin x + cos x)/(3 + sin 2x) dx is equal to

The integral int_0^(pi/2) dx/(x+sqrt(a^2-x^2)) equals

Integrate : int sqrt((sin x- sin^(3)x)/(1-sin^(3) x))dx

The value of the integral int_(0)^((pi)/(4))(sinx+cosx)/(3+sin2x)dx is equal to-

Integrate : int sqrt sin x/(cos^(9/2)x)dx

Integrate: int (sin x)/(sqrt(1+ sin x))dx

The value of the integral int(sin(x/2))/sqrt(1+sin(x/2)) dx can be

The value of the integral int_(pi/6)^(pi/2) ((1 + sin 2x + cos 2x)/(sin x + cosx)) dx is

The value of the integral sqrt2 int_0^pi sqrt(1-cos2x) dx is ?