Home
Class 12
MATHS
The integral int2^4 (logx^2)/((logx^2)+l...

The integral `int_2^4 (logx^2)/((logx^2)+log(36-12x+x^2)) dx` is equal to:

A

`2`

B

`4`

C

`1`

D

`6`

Text Solution

Verified by Experts

The correct Answer is:
C

`I=int_(2)^(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2))dx`
`I=2/2 int_(2)^(4)(log|x|)/(log|x|+log||6-x|)dx` ……….i
`I=int_(2)^(4)(log|6-x|)/(log|6-x|+log|x|) dx{int_(a)^(b)f(x)dx=int_(1)^(b)f(a+b-x)dx}` ……ii
Adding i and ii
`2I=int_(2)^(4)(log|x|+log|6-x|)/(log|x|+log|6-x|)dx=int_(2)^(4)dx=2`
Hence `I=1`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Integrate : int (logx)/((1+logx)^(2))dx

Integrate : int(logx)^(2)dx

Integrate : int log x^(2)dx

Integrate : int logx dx

Evaluate: int(logx)/((1+logx)^2)dx

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to

Integrate : int x^(3)(logx)^(2)dx

The value of int{(logx-1)/(1+(logx)^(2))}^(2)dx is equal to -

int_(1)^(e)(logx)^(2)dx

Integrate : int(log(1-x))/(x^(2))dx