Home
Class 12
MATHS
underset(nrarrinfty)lim((n+1)(n+2)....3n...

`underset(nrarrinfty)lim((n+1)(n+2)....3n)/(n^(2n)))^(1/n)` is equal to

A

`27/(e^(2)0`

B

`9/(e^(2))`

C

`3log3-2`

D

`18/e^(4)`

Text Solution

Verified by Experts

The correct Answer is:
A

`L=int_(nto oo) (((n+1)(n+2)……….(n+2n))/(n^(2n)))^(1//n)`
`:. log_(e)L=1/n(lim_(nto oo) sum_(r=1)^(2n)log(1+4/n))`
`:.log_(e)L=int_(0)^(2)log(1+x)dx`
`:.log_(e)L(xlog(1+x))_(0)^(2)-int_(0)^(2)x/(1+x)dx`
`:.log_(e)L=2log_(e)3-int_(0)^(2)(1-1/(1+x))dx`
`:. log_(e)L=2log3-(x-log(1+x))_(0)^(2)`
`=log_(e)L=2log3-(2-log3)`
`:.log_(e)L=3log3-2="log"27/(e^(2))`
`:.L=27/(e^(2))`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

underset(n to oo)lim(((n+1)(n+2)...3n)/(n^(2n)))^((1)/(n)) is equal to

value of underset(nrarrinfty)lim((n !)/n^n)^(1/n),where n inN is equal to

Evaluate: underset(nrarrinfty)lim (1/(n+1)+1/(n+2)+....+1/(2n))

underset(nrarroo)"lim"(-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to

Evaluate (with the help of definite integral): underset(n rarr infty)lim{(1+1/n)(1+2/n)…(1+n/n)}^(1/n)

Evaluate : underset(nrarrinfty)lim((1^m+2^m+...+n^m)/n^(m+1))

The value of lim_(n to oo) [(n!)/(n^(n))]^((1)/(n)) is equal to -

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

underset(xrarr1)"lim"(x+x^(2)+x^(3)+.....+x^(n)-n)/(x-1) =

Evaluate : underset(nrarrinfty)lim [1/n + 1/(n+1)+ 1/(n+2) + .... +1/(4n)]