Home
Class 12
MATHS
Evaluate: int(pi/4)^((3pi)/4)dx/(1+cosx)...

Evaluate: `int_(pi/4)^((3pi)/4)dx/(1+cosx)`

A

`-1`

B

`-2`

C

`2`

D

`4`

Text Solution

Verified by Experts

The correct Answer is:
C

`I=int_((pi)/4)^((3pi)/4)(dx)/(1+cosx)`………………i
`impliesI=int_((pi)/4)^((3pi)/4)(dx)/(1-cosx)`…………..ii
Adding i and ii we get
`2I=int_((pi)/4)^((3pi)/4)2/(sin^(2)x)dx`
`impliesI=int_((pi)/4)^((3pi)/4)cosec^(2)dx`
`impliesI=-(cotx)_(pi//4)^(3pi/4)=2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_((pi)/(4))^((3pi)/(4))(costheta)/(1+sintheta)d theta

int_(0)^((pi)/(2))(dx)/(1+cosx)

int_(0)^((pi)/(2))(xdx)/(1+cosx)

Evaluate: int_(-pi/4)^(npi-pi/4)|sinx+cosx|dx

Evaluate: int_(-pi//4)^(pi//4)log(sinx+cosx)dx

Evaluate: int_(pi//6)^(pi//4)(1+cotx)/(e^(x)sinx) dx

int_(0)^((pi)/(4))(dx)/(1+sinx)

Evaluate: int_((pi)/(4))^((pi)/(2))cos2xlog(sinx)dx

The value of int_((pi)/(4))^((3pi)/(4))(dx)/(1+cosx) is -

Evaluate int_(-pi/2)^(pi/2)(sin2x dx)/(1+cosx)