Home
Class 12
MATHS
The option(s) with the values of a and L...

The option(s) with the values of a and L that satisfy the following equation is (are)
`(int_0^(4pi)e^t(sin^6at+cos^4at)dt)/(int_0^pi e^t(sin^6at+cos^4at)dt)=L`

A

`a=2,L=(e^(4pi)-1)/(e^(pi)-1)`

B

`a=2,L=(e^(4pi+1))/(e^(pi)+1)`

C

`a=4,L=(e^(4pi)-1)/(e^(pi)-1)`

D

`a=4,L=(e^(4pi)+1)/(e^(pi)+1)`

Text Solution

Verified by Experts

The correct Answer is:
A, C

Let `int_(0)^(pi)e^(t)(sin^(6)at+cos^(4)at)dt=I_(1)`
and `I_(2)=int_(pi)^(2pi)e^(t)(sin^(6)at+cos^(4)at)dt`
Put `t=x+pi` in `I_(2)`
`:. dt=dx`
For `a=2` and `a=4`
`:.int_(0)^(pi)e^(x+n)(sin^(6)ax+cos^(4)ax)dt=e^(pi)I_(1)`
Similarly,` int_(2pi)^(3pi)e^(t)(sin^(6)at+cos^(4)at)dt=e^(2pi)I_(1)`
and `int_(3pi)^(4pi)e^(t)(sin^(6)at+cos^(4)at)dt=e^(3pi)I_(1)`
`:. (int_(0)^(4pi)e^(t)(sin^(6)at+cos^(4)at)dt)/(int_(0)^(pi)e^(t)(sin^(6)at+cos^(4)at)dt)`
`int_(0)^(pi)e^(t)(sin^(6)at+cos^(4)at)dt+int_(pi)^(2pi)e^(t)(sin^(6)at+cos^(4)at)dt`
`=(+int_(2pi)^(3pi)e^(t)(sin^(6)at+cos^(4)at)dt+int_(3pi)^(4pi)e^(t)(sin^(6)at+cos^(4)at)dt)/(int_(0)^(pi)e^(t)(sin^(6)at+cos^(4)at)dt)`
`=1+e^(pi)+e^(2pi)+e^(3pi)`
`=(e^(4pi)-1)/(e^(pi)-1)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE MAIN|12 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The options(s) with the values of a and L that satisfy the following equation is(are) (int_(0)^(4pi)e^(t)(sin^(6)at+cos^(4)at)dt)/(int_(0)^(pi)e^(t)(sin^(6)at+cos^(4)at)dt)=L?

int_(0)^(8pi)sin^(6)xdx=8int_(0)^(pi)sin^(6)xdx

Evaluate the following: int_0^(pi/6)sin2xcosxdx

int sqrt(2+ sin 3t) cos 3t dt

The value of lim_(xrarr0)(int_0^(x^2) cos(t^2)dt)/(xsinx) is

Evaluate the following: int_0^(pi/4)cos^2xdx

The value of int_0^x (t - abst)^2/(1 + t^2) dt is equal to

Prove that, int_(0)^(6pi)sin^(4)xdx=6int_(0)^(pi)sin^(4)xdx

The value of int_0^(pi/4)sin2xdx is

Evaluate int_(0)^(pi/2)(cos^(4)x)/(sin^(4)x+cos^(4)x)dx

CENGAGE PUBLICATION-DEFINITE INTEGRATION -JEE ADVANCED
  1. Let f:[a,b]rarr[1,infty) be a continuous function and lt g: RrarrR be ...

    Text Solution

    |

  2. Let f:(0,oo)rarrRR be given by f(x)=oversetxunderset(1/x)inte^((t+1/...

    Text Solution

    |

  3. The option(s) with the values of a and L that satisfy the following eq...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2, pi/2). T...

    Text Solution

    |

  5. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  6. Let f: Rto(0,1) be a continuous function. Then, which of the following...

    Text Solution

    |

  7. If Isum(k=1)^(98)intk^(k+1)(k+1)/(x(x+1))dx ,t h e n:

    Text Solution

    |

  8. If g(x)=int(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(...

    Text Solution

    |

  9. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  10. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  11. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  12. Let F:RrarrR be a thrice differentiable function. Suppose that F(1)=0,...

    Text Solution

    |

  13. Match the terms given in Column I with the compound given in Column II...

    Text Solution

    |

  14. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  15. Let y^(prime)(x)+y(x)g^(prime)(x)=g(x)g^(prime)(x),y(0) = 0,x in R , ...

    Text Solution

    |

  16. The value of int0^1 4x^3 {d^2/(dx^2) (1 - x^2)^5 } dx is

    Text Solution

    |

  17. Let f: R rarr R be a continuous odd function, which vanishes exactly a...

    Text Solution

    |

  18. If alpha=int0^1(e^(9x+3tan^-1x))((12+9x^2)/(1+x^2))dx where tan^-1x t...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. Let f: R->R be a function defined by f(x)={[x],(xlt=2) \ \ (0,x >2) ...

    Text Solution

    |