Home
Class 12
MATHS
If A B C having vertices A(acostheta...

If ` A B C` having vertices `A(acostheta_1,asintheta_1),B(acostheta_2asintheta_2),a n dC(acostheta_3,asintheta_3)` is equilateral, then prove that `costheta_1+costheta_2+costheta_3=sintheta_1+sintheta_2+sintheta_3=0.`

A

`costheta_1+costheta_2+costheta_3=0`

B

`sintheta_1+sintheta_2+sin theta_3=0`

C

`tantheta_1+tantheta_2+tantheta_3=0`

D

`cottheta_1+cottheta_2+cottheta_3=0`

Text Solution

Verified by Experts

The correct Answer is:
A, B

Vertices `(a cos theta_1,a sintheta_1),(acostheta_2,a sintheta_2)`, and origin is the circumcenter (centroid) of circumcircle. Therefore, the coordinates of the centroid are
`((a(costheta_1+costheta_2+costheta_3))/(3),(a(sintheta_1,+sintheta_2+sintheta_3))/(3))`
But as the centroid is the origin (0,0) we have `cos theta_1+costheta_2+costheta_3=0`
and `sin theta_1+sintheta_2+sintheta_3=0`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Linked|10 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Matrix match type|4 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Exercises|59 Videos
  • COORDINATE SYSTEM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

if costheta_1+costheta_2+costheta_3=3 then sin^2theta_1+sin^4theta_2+sin^6theta_3=

Solve theta for 4sinthetacostheta=1+2costheta-2sintheta (0

If sintheta_1+sintheta_2+sintheta_3=3, then costheta_1+costheta_2+costheta_3 is equal to

Prove that (1+sintheta-costheta)/(1+sintheta+costheta)="tan"theta/2 .

Evaluate intcos2theta log((costheta+sintheta)/(costheta-sintheta))d theta

Prove that: (1+sintheta-costheta)/(1+sintheta+costheta)=tan(theta/2)

(1+sintheta-costheta)/(1+sintheta+costheta) =

If 3sintheta+4costheta=5, then show that 4sintheta-3costheta=0.

Prove that 0le3costheta+4sintheta+5le10

If costheta+sintheta=sqrt2costheta , Prove that costheta-sintheta=sqrt2sintheta