Home
Class 12
MATHS
The points A(0,0),B(cosalpha,sinalpha) a...

The points `A(0,0),B(cosalpha,sinalpha)` and `C(cosbeta,sinbeta)` are the vertices of a right-angled triangle then

A

`sin.(alpha-beta)/(2)=(1)/(sqrt2)`

B

`cos.(alpha-beta)/(2)=(1)/(sqrt2)`

C

`cos.(alpha-beta)/(2)=-(1)/(sqrt2)`

D

`sin.(alpha-beta)/(2)=-(1)/(sqrt2)`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

Since `AB=AC=1`, the triangle is right -angled at point A. we have `tanalphatanbeta=-1` or `cos(alpha-beta)=0or alpha-beta=+-(pi)/(2)`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Linked|10 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Matrix match type|4 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Exercises|59 Videos
  • COORDINATE SYSTEM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

If the points O (0,0), A(cos alpha, sin alpha), B(cos beta, sin beta) are the vertices of a right-angled triangle, then |sinfrac((alpha-beta))(2)| =

Show that the points (0,7,10), (-1,6,6) and (-4,9,6) are the vertices of a right angled isosceles triangle.

Show that the points (6,6) , (2,3) and (4,7) are the vertices of a right angled triangle

Show that the points A=(2,-1,1),B=(1,-3,-5) and C=(3,-4,-4) are vertices of a right angled triangle (using vector method).

Without using the Pythagoras theorem, show that the points (4,4), (3, 5) and (-1, -1) are the vertices of a right angled triangle.

The points (0,8/3),(1,3) and (82 ,30) are the vertices of (A) an obtuse-angled triangle (B) an acute-angled triangle (C) a right-angled triangle (D) none of these

Prove that A(3,3) B (8,-2) and C(-2,-2) are the vertices of a right - angled isosceles triangle . Also, find the length of the hypotenuse of triangle(ABC)

P(cosalpha,sinalpha), Q(cosbeta, sinbeta) , R(cosgamma, singamma) are vertices of triangle whose orthocenter is (0, 0) then the value of cos(alpha-beta) + cos(beta-gamma) + cos(gamma-alpha) is

Show that the points (3,0),(6,4) and (-1,3) are the vertices of a right angled isosceles triangle.

Prove that the points (1,-3,1), (0,1,2), (2,-1,3) are the vertices of an isosceles right angled triangle