Home
Class 12
MATHS
f(x)=[2x]sin3pixa n df^(prime)(k^(prime)...

`f(x)=[2x]sin3pixa n df^(prime)(k^(prime))=lambdakpi(-1)^k` (where [.] denotes the greatest integer function and `k in N),` then find the value of `lambda` .

Text Solution

Verified by Experts

`f'(k)=underset(hrarr0)lim(f(k+h)-f(k))/(h)`
`=underset(hrarr0)lim([2k+2h]sin(3pi(k+h))-[2k]sin(3kpi))/(h)`
`=underset(hrarr0)lim([2k]sin(3kpi+3pih))/(h)" "(as sin(3kpi)=0)`
`=2kxxunderset(hrarr0)lim((-1)^(k)sin(3pih))/(h)" (as 2k is integer)"`
`=2kxx(-1)^(k)xx(3pi)underset(hrarr0)lim(sin(3pih))/((3pih))`
`=6kpi(-1)^(k)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[2x]sin3pix then prove that f'(k^(+))=6kpi(-1)^(k) , (where [.] denotes the greatest integer function and k in N).

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

If [x+[2x]] lt3 , where [.] denotes the greatest integer function, then x is

Solve lim_(xrarr1)[sin^(-1)x] (where [.] denotes greatest integer function.)

If [dot] denotes the greatest integer function, then find the value of lim_(x->0) ([x]+[2x]++[n x])/(n^2)

underset(xrarr0)(lim)[(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

Evaluate: int_(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the greatest integer function

Evaluate: int_(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the greatest integer function

Let f(n)=[1/2+n/100] , where [.] denotes the greatest integer function,then the value of sum_(n=1)^151 f(n)